A Probabilistic Algebraic Attack on the Grain Family of Stream Ciphers
نویسندگان
چکیده
In 2005, Hell, Johansson and Meier submitted a stream cipher proposal named Grain v1 to the estream call for stream cipher proposals and it also became one estream finalists in the hardware category. The output function of Grain v1 connects its 160 bits internal state divided equally between an LFSR and an NFSR, using a non-linear filter function in a complex way. Over the last years many cryptanalyst identified several weaknesses in Grain v1. As a result in 2011 the inventors modified Grain v1 and published a new version of Grain named Grain-128a which has a similar structure as Grain v1 but with a 256 bits internal state with an optional authentication is the latest version of Grain family resisting all known attacks on Grain v1. However both these ciphers are quite resistant against the classical algebraic attack due to the rapid growth of the degree of the key-stream equations in subsequent clockings caused by the NFSR. This paper presents a probabilistic algebraic attack on both these Grain versions. The basic idea of our attack is to develop separate probabilistic equations for the LFSR and the NFSR bits from each key-stream equations. Surprisingly it turns out that in case of Grain-128a our proposed equations hold with all most sure probability, which makes the sure retrieval of the LFSR bits. We also outline a technique to reduce the growth of degree of the equations involving the NFSR bits for Grain v1. Further we high light that the concept of probabilistic algebraic attack as proposed in this paper can be considered as a generic attack strategy against any stream cipher having similar structure of the output function as in case of the Grain family.
منابع مشابه
Algebraic Countermeasure to Enhance the Improved Summation Generator with 2-Bit Memory
Recently proposed algebraic attack has been shown to be very effective on several stream ciphers. In this paper, we have investigated the resistance of PingPong family of stream ciphers against algebraic attacks. This stream cipher was proposed in 2008 to enhance the security of the improved summation generator against the algebraic attack. In particular, we focus on the PingPong-128 stream cip...
متن کاملREGULAR PAPERS Algebraic Countermeasure to Enhance the Improved Summation Generator with 2-Bit Memory Md. Iftekhar Salam and Hoon-Jae Lee A Routing Protocol based on Temporal-awareness Ordered-MPR for Dynamic Wireless Multi-hop Mobile Networks
Recently proposed algebraic attack has been shown to be very effective on several stream ciphers. In this paper, we have investigated the resistance of PingPong family of stream ciphers against algebraic attacks. This stream cipher was proposed in 2008 to enhance the security of the improved summation generator. In particular, we focus on the PingPong-128 stream cipher’s resistance against alge...
متن کاملProbabilistic Signature Based Framework for Differential Fault Analysis of Stream Ciphers
Differential Fault Attack (DFA) has received serious attention in cryptographic literature and very recently such attacks have been mounted against several popular stream ciphers for example Grain v1, MICKEY 2.0 and Trivium, that are parts of the eStream hardware profile. The basic idea of the fault attacks consider injection of faults and the most general set-up should consider faults at rando...
متن کاملFault Analysis of Grain Family of Stream Ciphers
In this paper, we present fault attack on Grain family of stream ciphers, an eStream finalist. The earlier fault attacks on Grain work on LFSR whereas our target for fault induction is the NFSR. Our attack requires a small number of faults to be injected; 150 only for Grain v1 and only 312 and 384 for Grain-128 and Grain-128a, respectively. The number of faults are much lesser than the earlier ...
متن کاملOn the computational complexity of finding a minimal basis for the guess and determine attack
Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...
متن کامل