Further Simulations and Analyses Demonstrate Open Problems of Phylostratigraphy
نویسندگان
چکیده
Phylostratigraphy, originally designed for gene age estimation by BLAST-based protein homology searches of sequenced genomes, has been widely used for studying patterns and inferring mechanisms of gene origination and evolution. We previously showed by computer simulation that phylostratigraphy underestimates gene age for a nonnegligible fraction of genes and that the underestimation is severer for genes with certain properties such as fast evolution and short protein sequences. Consequently, many previously reported age distributions of gene properties may have been methodological artifacts rather than biological realities. Domazet-Lošo and colleagues recently argued that our simulations were flawed and that phylostratigraphic bias does not impact inferences about gene emergence and evolution. Here we discuss conceptual difficulties of phylostratigraphy, identify numerous problems in Domazet-Lošo et al.'s argument, reconfirm phylostratigraphic error using simulations suggested by Domazet-Lošo and colleagues, and demonstrate that a phylostratigraphic trend claimed to be robust to error disappears when genes likely to be error-resistant are analyzed. We conclude that extreme caution is needed in interpreting phylostratigraphic results because of the inherent biases of the method and that reanalysis using genes exhibiting no error in realistic simulations may help reduce spurious findings.
منابع مشابه
No Evidence for Phylostratigraphic Bias Impacting Inferences on Patterns of Gene Emergence and Evolution
Phylostratigraphy is a computational framework for dating the emergence of DNA and protein sequences in a phylogeny. It has been extensively applied to make inferences on patterns of genome evolution, including patterns of disease gene evolution, ontogeny and de novo gene origination. Phylostratigraphy typically relies on BLAST searches along a species tree, but new simulation studies have rais...
متن کاملEffects of geometrical and geomechanical properties on slope stability of open-pit mines using 2D and 3D finite difference methods
Slope stability analysis is one of the most important problems in mining and geotechnical engineering. Ignoring the importance of these problems can lead to significant losses. Selecting an appropriate method to analyze the slope stability requires a proper understanding of how different factors influence the outputs of the analyses. This paper evaluates the effects of considering the real geom...
متن کاملAn Uncertainty-based Transition from Open Pit to Underground Mining
There are some large scale orebodies that extend from surface to the extreme depths of the ground. Such orebodies should be extracted by a combination of surface and underground mining methods. Economically, it is highly important to know the limit of upper and lower mining activities. This concern leads the mine designers to the transition problem, which is one of the most complicated problems...
متن کاملComputational fluid dynamics simulations for investigation of parameters affecting goaf gas distribution
It is necessary to obtain a fundamental understanding of the goaf gas flow patterns in longwall mine in order to develop optimum goaf gas drainage and spontaneous combustion (sponcom) management strategies. The best ventilation layout for a longwall underground mine should assist in goaf gas drainage and further reduce the risk of sponcom in the goaf. Further, in the longwall panel, regulators ...
متن کاملPhylostratigraphic Bias Creates Spurious Patterns of Genome Evolution.
Phylostratigraphy is a method for dating the evolutionary emergence of a gene or gene family by identifying its homologs across the tree of life, typically by using BLAST searches. Applying this method to all genes in a species, or genomic phylostratigraphy, allows investigation of genome-wide patterns in new gene origination at different evolutionary times and thus has been extensively used. H...
متن کامل