Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones.
نویسندگان
چکیده
Neural precursors persist throughout life in the rodent forebrain subventricular zone (SVZ) and hippocampal dentate gyrus. The regulation of persistent neural stem cells is poorly understood, in part because of the lack of neural progenitor markers. The Sox B1 subfamily of HMG-box transcription factors (Sox1-3) is expressed by precursors in the embryonic nervous system, where these factors maintain neural progenitors in an undifferentiated state while suppressing neuronal differentiation. Sox2 expression persists in germinative zones of the adult rodent brain, but Sox3 expression in the postnatal brain remains largely unexplored. Here we examine Sox3 expression in the neonatal and adult mouse brain to gain insight into its potential involvement in regulating persistent neural stem cells and neurogenesis. We also investigate Sox3 expression during expansion and neural differentiation of postnatal mouse SVZ neural stem cell and human embryonic stem cell (hESC) cultures. We find that Sox3 is expressed transiently by proliferating and differentiating neural progenitors in the SVZ-olfactory bulb pathway and dentate gyrus. Sox3 immunoreactivity also persists in specific postmitotic neuronal populations. In vitro, high Sox3 protein expression levels in undifferentiated, SVZ-derived neurospheres decline markedly with differentiation. Sox3 immunoreactivity in hESCs appears upon differentiation to neural progenitors and then decreases as cells differentiate further into neurons. These findings suggest that Sox3 labels specific stages of hESC-derived and murine neonatal and adult neural progenitors and are consistent with a role for Sox3 in neural stem cell maintenance. Persistent Sox3 expression in some mature neuronal populations suggests additional undefined roles for Sox3 in neuronal function.
منابع مشابه
Injury-induced neurogenesis in the adult mammalian brain.
The persistence of neurogenesis in the adult mammalian forebrain suggests that endogenous precursors may be a potential source for neuronal replacement after injury or neurodegeneration. Limited knowledge exists, however, regarding the normal function of neurogenesis in the adult and its alteration by brain injury. Neural precursors generate neurons throughout life in the mammalian forebrain su...
متن کاملSOX3 expression in the glial system of the developing and adult mouse cerebellum
BACKGROUND The cerebellum plays a vital role in equilibrium, motor control, and motor learning. The discrete neural and glial fates of cerebellar cells are determined by the molecular specifications (e.g. transcription factors) of neuroprogenitor cells that are influenced by local microenvironment signals. In this study, we evaluated the expression and function of Sox3, a single-exon gene locat...
متن کاملI-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans
Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...
متن کاملIsolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells
Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...
متن کاملSpatial Distribution of Prominin-1 (CD133) – Positive Cells within Germinative Zones of the Vertebrate Brain
BACKGROUND In mammals, embryonic neural progenitors as well as adult neural stem cells can be prospectively isolated based on the cell surface expression of prominin-1 (CD133), a plasma membrane glycoprotein. In contrast, characterization of neural progenitors in non-mammalian vertebrates endowed with significant constitutive neurogenesis and inherent self-repair ability is hampered by the lack...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 497 1 شماره
صفحات -
تاریخ انتشار 2006