Setdb1 Is Required for Myogenic Differentiation of C2C12 Myoblast Cells via Maintenance of MyoD Expression

نویسندگان

  • Young Joon Song
  • Jang Hyun Choi
  • Hansol Lee
چکیده

Setdb1, an H3-K9 specific histone methyltransferase, is associated with transcriptional silencing of euchromatic genes through chromatin modification. Functions of Setdb1 during development have been extensively studied in embryonic and mesenchymal stem cells as well as neurogenic progenitor cells. But the role of Sedtdb1 in myogenic differentiation remains unknown. In this study, we report that Setdb1 is required for myogenic potential of C2C12 myoblast cells through maintaining the expressions of MyoD and muscle-specific genes. We find that reduced Setdb1 expression in C2C12 myoblast cells severely delayed differentiation of C2C12 myoblast cells, whereas exogenous Setdb1 expression had little effect on. Gene expression profiling analysis using oligonucleotide micro-array and RNA-Seq technologies demonstrated that depletion of Setdb1 results in downregulation of MyoD as well as the components of muscle fiber in proliferating C2C12 cells. In addition, exogenous expression of MyoD reversed transcriptional repression of MyoD promoter-driven lucif-erase reporter by Setdb1 shRNA and rescued myogenic differentiation of C2C12 myoblast cells depleted of endogenous Setdb1. Taken together, these results provide new insights into how levels of key myogenic regulators are maintained prior to induction of differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dehydrocorydaline promotes myogenic differentiation via p38 MAPK activation

Muscle regeneration is a coordinated process that involves proliferation and differentiation of muscle progenitor cells. Activation of MyoD is a key event in myogenic differentiation, which is regulated by p38 mitogen‑activated protein kinases (MAPK). In a screen of natural compounds for the enhancement of MyoD activity, dehydrocorydaline (DHC) from the Corydalis tuber was identified. Treatment...

متن کامل

Bakuchiol augments MyoD activation leading to enhanced myoblast differentiation.

Myoblast differentiation is fundamental to skeletal muscle development and regeneration after injury and defects in this process are implicated in muscle atrophy associated with aging or pathological conditions. MyoD family transcription factors function as mater regulators in induction of muscle-specific genes during myoblast differentiation. We have identified bakuchiol, a prenylated phenolic...

متن کامل

Notch Pathway Activation Contributes to Inhibition of C2C12 Myoblast Differentiation by Ethanol

The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myog...

متن کامل

CRABP2 Promotes Myoblast Differentiation and Is Modulated by the Transcription Factors MyoD and Sp1 in C2C12 Cells

Cellular retinoic acid binding protein 2 (CRABP2), a member of a family of specific carrier proteins for Vitamin A, belongs to a family of small cytosolic lipid binding proteins. Our previous study suggested that CRABP2 was involved in skeletal muscle development; however, the molecular function and regulatory mechanism of CRABP2 in myogenesis remained unclear. In this study, we found that the ...

متن کامل

HDAC11 Inhibits Myoblast Differentiation through Repression of MyoD-Dependent Transcription

Abnormal differentiation of muscle is closely associated with aging (sarcopenia) and diseases such as cancer and type II diabetes. Thus, understanding the mechanisms that regulate muscle differentiation will be useful in the treatment and prevention of these conditions. Protein lysine acetylation and methylation are major post-translational modification mechanisms that regulate key cellular pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2015