Dimeric chlorite dismutase from the nitrogen‐fixing cyanobacterium C yanothece sp. PCC7425

نویسندگان

  • Irene Schaffner
  • Stefan Hofbauer
  • Michael Krutzler
  • Katharina F. Pirker
  • Marzia Bellei
  • Gerhard Stadlmayr
  • Georg Mlynek
  • Kristina Djinovic‐Carugo
  • Gianantonio Battistuzzi
  • Paul G. Furtmüller
  • Holger Daims
  • Christian Obinger
چکیده

It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite 'dismutase', Cld). Beside the water-splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s(-1), KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 10(6) M(-1) s(-1)]. The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low-spin complex with k(on)  = (1.6 ± 0.1) × 10(5) M(-1) s(-1) and k(off) = 1.4 ± 2.9 s(-1) (KD ∼ 8.6 μM). Both, thermal and chemical unfolding follows a non-two-state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2 -producing proteins in (nitrogen-fixing) cyanobacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, sequencing, and regulation of the global nitrogen regulator gene ntcA in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain BH68K.

In cyanobacteria, ammonium represses expression of proteins involved in nitrogen fixation and assimilation. The global nitrogen regulator gene ntcA encodes a DNA-binding protein, NtcA, that is a transcriptional activator of genes subject to nitrogen control. We report the cloning and sequencing of the ntcA gene from a nitrogen-fixing unicellular cyanobacterium, Cyanothece sp. strain BH68K. The ...

متن کامل

Effect of interactions among algae on nitrogen fixation by blue-green algae (cyanobacteria) in flooded soils.

Nitrogen fixation (C(2)H(2) reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae l...

متن کامل

Aerobic Hydrogen Accumulation by a Nitrogen-Fixing Cyanobacterium, Anabaena sp.

Hydrogen evolution by a nitrogen-fixing cyanobacterium, Anabaena sp. strain N-7363, was tested in order to develop a water biophotolysis system under aerobic conditions. A culture of the strain supplemented with carbon dioxide under an air atmosphere evolved hydrogen and oxygen gas, which reached final concentrations of 9.7 and 69.8%, respectively, after 12 days of incubation. Hydrogen uptake a...

متن کامل

Complete Genome Sequence of the Cyanobacterium Anabaena sp. 33047

This study presents the complete nucleotide sequence of Anabaena sp. ATCC 33047 (Anabaena CA), a filamentous, nitrogen-fixing marine cyanobacterium, which under salt stress conditions accumulates sucrose internally. The elucidation of the genome will contribute to the understanding of cyanobacterial diversity.

متن کامل

Molecular Mechanism of Enzymatic Chlorite Detoxification: Insights from Structural and Kinetic Studies

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Although structure and steady-state kinetics of Clds have been elucidated, many questions remain (e.g., the mechanism of chlorite cleavage and the pH dependence of the reaction). Here, we present high-resolution X-ray crystal structures of a dimeric Cld at pH 6.5 and 8.5, its fluoride and is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2015