Learning Face Hallucination in the Wild
نویسندگان
چکیده
Face hallucination method is proposed to generate highresolution images from low-resolution ones for better visualization. However, conventional hallucination methods are often designed for controlled settings and cannot handle varying conditions of pose, resolution degree, and blur. In this paper, we present a new method of face hallucination, which can consistently improve the resolution of face images even with large appearance variations. Our method is based on a novel network architecture called Bi-channel Convolutional Neural Network (Bi-channel CNN). It extracts robust face representations from raw input by using deep convolutional network, then adaptively integrates two channels of information (the raw input image and face representations) to predict the high-resolution image. Experimental results show our system outperforms the prior stateof-the-art methods.
منابع مشابه
Face Hallucination Based on Eigentransformation Learning
In this paper, we study face hallucination which refers to inferring a high-resolution (HR) face image from the input low-resolution (LR) one. We advance an eigentransformation method [1] based on principal component analysis (PCA) for face hallucination by exploring the local geometry structure of data manifold and learning a specified eigentransformation model for each observation image. Firs...
متن کاملDeep Cascaded Bi-Network for Face Hallucination
We present a novel framework for hallucinating faces of unconstrained poses and with very low resolution (face size as small as 5pxIOD). In contrast to existing studies that mostly ignore or assume pre-aligned face spatial configuration (e.g. facial landmarks localization or dense correspondence field), we alternatingly optimize two complementary tasks, namely face hallucination and dense corre...
متن کاملAlignment-Free and High-Frequency Compensation in Face Hallucination
Face hallucination is one of learning-based super resolution techniques, which is focused on resolution enhancement of facial images. Though face hallucination is a powerful and useful technique, some detailed high-frequency components cannot be recovered. It also needs accurate alignment between training samples. In this paper, we propose a high-frequency compensation framework based on residu...
متن کاملNearest feature line embedding for face hallucination
A new manifold learning method, called nearest feature line (NFL) embedding, for face hallucination is proposed. While many manifold learning based face hallucination algorithms have been proposed in recent years, most of them apply the conventional nearest neighbour metric to derive the subspace and may not effectively characterise the geometrical information of the samples, especially when th...
متن کاملNow You See Me: Deep Face Hallucination for Unviewed Sketches
Face hallucination has been well studied in the last decade because of its useful applications in law enforcement and entertainment. Promising results on the problem of sketch-photo face hallucination have been achieved with classic, and increasingly deep learning-based methods. However, synthesized photos still lack the crisp fidelity of real photos. More importantly, good results have primari...
متن کامل