Optimal Crops Selection using Multiobjective Evolutionary Algorithms

نویسندگان

  • Ricardo Brunelli
  • Christian von Lücken
چکیده

96 AI MAGAZINE An adequate use of land resources is an essential guarantee of sustainable development, and many authors have suggested different approaches (Chi-Mei et al. 2002; Stewart, Janssen, and van Herwijnen 2004; Matthews et al. 2000; Tsuruta, Hoshi, and Sugai 2001; Bocco, Sayago, and Tartara 2002). The optimal use of soils is the basis of all forms of sustainable land use, that is, agricultural land use that remains productive in the long term. There are many benefits of an optimal use of soils, such as a decrease of rural poverty, watershed protection, increased biodiversity, more sustainable agricultural production, and increased food security (Schroth and Sinclair 2003). Therefore, optimal soil use planning is an important problem with social, economic, and ecological implications. Cultivation areas are usually divided in parcels, each one becoming a production unit. Every year farmers have to decide what to plant in each parcel. This requires the analysis of tradeoffs between investments that have to be made, expected profits, economical risks, and environmental effects of cultivation (Schroth and Sinclair 2003). Sustainable agricultural soil use requires making the land available for farming as productive as possible while considering the environmental impact of the cultivation process. Under natural conditions, soils present chemical restrictions for crop development. Chemical soil tests are used to provide information about acidity and nutrient levels of each land parcel. According to the requirements of crops to be cultivated, it is usual to modify soil chemical characteristics, changing the quantity of nutrients and acidity through fertilizing and liming, making productive agriculture possible but affecting the quality of soils, groundwater repositories, and the overall environment (Johnson, Adams, and Perry 1991). Furthermore, economic restrictions may constrain farmers to use small quantities of mineral fertilizers or sometimes none at all,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crops Selection for Optimal Soil Planning using Multiobjective Evolutionary Algorithms

Farm managers have to deal with many conflicting objectives when planning which crop to cultivate. Soil characteristics are extremely important when determining yield potential. Fertilization and liming are commonly used to adequate soils to the nutritional requirements of the crops to be cultivated. Planting the crop that will best fit the soil characteristics is an interesting alternative to ...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

A Portfolio Optimization Approach to Selection in Multiobjective Evolutionary Algorithms

In this work, a new approach to selection in multiobjective evolutionary algorithms (MOEAs) is proposed. It is based on the portfolio selection problem, which is well known in financial management. The idea of optimizing a portfolio of investments according to both expected return and risk is transferred to evolutionary selection, and fitness assignment is reinterpreted as the allocation of cap...

متن کامل

Solving Multiobjective Optimization Problem by Constraint Optimization

Multiobjective optimization problems (MOPs) have attracted intensive efforts from AI community and many multiobjective evolutionary algorithms (MOEAs) were proposed to tackle MOPs. In addition, a few researchers exploited MOEAs to solve constraint optimization problems (COPs). In this paper, we investigate how to tackle a MOP by iteratively solving a series of COPs and propose the algorithm nam...

متن کامل

Evolutionary Multiobjective Optimization for Fuzzy Knowledge Extraction

− A new trend in the design of fuzzy rulebased systems is the use of evolutionary multiobjective optimization (EMO) algorithms. This trend is observed in various areas in machine learning. EMO algorithms are often used to search for a number of Pareto-optimal non-linear systems with respect to their accuracy and complexity. In this paper, we first explain some basic concepts in multiobjective o...

متن کامل

On multiobjective selection for multimodal optimization

Multiobjective selection operators are a popular and straightforward tool for preserving diversity in evolutionary optimization algorithms. One application area where diversity is essential is multimodal optimization with its goal of finding a diverse set of either globally or locally optimal solutions of a single-objective problem. We therefore investigate multiobjective selection methods that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AI Magazine

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2009