Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction.

نویسندگان

  • Danuta Szczesna
  • Jiaju Zhao
  • Michelle Jones
  • Gang Zhi
  • James Stull
  • James D Potter
چکیده

The role of phosphorylation of the myosin regulatory light chains (RLC) is well established in smooth muscle contraction, but in striated (skeletal and cardiac) muscle its role is still controversial. We have studied the effects of RLC phosphorylation in reconstituted myosin and in skinned skeletal muscle fibers where Ca2+ sensitivity and the kinetics of steady-state force development were measured. Skeletal muscle myosin reconstituted with phosphorylated RLC produced a much higher Ca2+ sensitivity of thin filament-regulated ATPase activity than nonphosphorylated RLC (change in -log of the Ca2+ concentration producing half-maximal activation = approximately 0.25). The same was true for the Ca2+ sensitivity of force in skinned skeletal muscle fibers, which increased on reconstitution of the fibers with the phosphorylated RLC. In addition, we have shown that the level of endogenous RLC phosphorylation is a crucial determinant of the Ca2+ sensitivity of force development. Studies of the effects of RLC phosphorylation on the kinetics of force activation with the caged Ca2+, DM-nitrophen, showed a slight increase in the rates of force development with low statistical significance. However, an increase from 69 to 84% of the initial steady-state force was observed when nonphosphorylated RLC-reconstituted fibers were subsequently phosphorylated with exogenous myosin light chain kinase. In conclusion, our results suggest that, although Ca2+ binding to the troponin-tropomyosin complex is the primary regulator of skeletal muscle contraction, RLC play an important modulatory role in this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of the regulatory light chains of myosin affects Ca sensitivity of skeletal muscle contraction

Szczesna, Danuta, Jiaju Zhao, Michelle Jones, Gang Zhi, James Stull, and James D. Potter. Phosphorylation of the regulatory light chains of myosin affects Ca2 sensitivity of skeletal muscle contraction. J Appl Physiol 92: 1661–1670, 2002. First published December 21, 2001; 10.1152/japplphysiol.00858.2001.—The role of phosphorylation of the myosin regulatory light chains (RLC) is well establishe...

متن کامل

Regulation of contraction and relaxation in arterial smooth muscle.

Intracellular calcium concentration ([Ca2+]i)-dependent activation of myosin light chain kinase and its phosphorylation of the 20-kd light chain of myosin is generally considered the primary mechanism responsible for regulation of contractile force in arterial smooth muscle. However, recent data suggest that the relation between [Ca2+]i and myosin light chain phosphorylation is variable and dep...

متن کامل

Coexistence of potentiation and fatigue in skeletal muscle.

Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light c...

متن کامل

Decreased Phosphatase Activity, Increased Ca2+ Sensitivity, and Myosin Light Chain Phosphorylation in Urinary Bladder Smooth Muscle of Newborn Mice

Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Co...

متن کامل

Mechanisms of airway smooth muscle relaxation induced by beta2-adrenergic agonists.

Airway smooth muscle cell (ASMC) contraction is regulated by myosin phosphorylation to control actin-myosin cross-bridge activity. Myosin phosphorylation is determined by the antagonistic activity of myosin light chain (MLC) kinase (MLCK) and phosphatase (MLCP). MLCK activity is increased by increases in intracellular Ca2+ concentration ([Ca2+]i) associated with Ca2+ oscillations. MLCP activity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2002