Explicitly representing soil microbial processes in Earth system models

نویسندگان

  • William R. Wieder
  • Steven D. Allison
  • Eric A. Davidson
  • Katerina Georgiou
  • Oleksandra Hararuk
  • Yujie He
  • Francesca Hopkins
  • Yiqi Luo
  • Matthew J. Smith
  • Benjamin Sulman
  • Katherine Todd-Brown
  • Ying-Ping Wang
  • Jianyang Xia
  • Xiaofeng Xu
چکیده

Microbes influence soil organic matter decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) will make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadalto century-long projections. Here we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decompositionmodels, we suggest the following: (1) guidelines for commonmodel parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global soil carbon projections are improved by modelling microbial processes

Society relies on Earth system models (ESMs) to project future climate and carbon cycle feedbacks. However, the soil C response to climate change is highly uncertain in these models1,2 and they omit key biogeochemical mechanisms3–5. Specifically, the traditional approach in ESMs lacks direct microbial control over soil C dynamics6–8. Thus, we tested a new model that explicitly represents microb...

متن کامل

The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis

The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and t...

متن کامل

A framework for representing microbial decomposition in coupled climate models

Accurate prediction of future atmospheric CO2 concentrations is essential for evaluating climate change impacts on ecosystems and human societies. One major source of uncertainty in model predictions is the extent to which global warming will increase atmospheric CO2 concentrations through enhanced microbial decomposition of soil organic carbon. Recent advances in microbial ecology could help r...

متن کامل

Soil C and N models that integrate microbial diversity

Industrial agriculture is yearly responsible for the loss of 55-100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts. In particular, the management of soil organic matter (SOM) is a key factor influencing C and N cycles. Soil microorganisms play a...

متن کامل

Global patterns in belowground communities.

Although belowground ecosystems have been studied extensively and soil biota play integral roles in biogeochemical processes, surprisingly we have a limited understanding of global patterns in belowground biomass and community structure. To address this critical gap, we conducted a meta-analysis of published data (> 1300 datapoints) to compare belowground plant, microbial and faunal biomass acr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015