The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components

نویسندگان

  • Paul J. DeMott
  • David C. Rogers
  • Sonia M. Kreidenweis
چکیده

Ice may form by both homogeneous and heterogeneous freezing nucleation processes in clouds at temperatures below -3 5øC. Most investigations have focused on the former process. This paper presents results from adiabatic parcel model calculations that include the effects of both freezing processes in unactivated solution droplets. Uncertainties in predicting the homogeneous freezing rates are discussed and used to select solution drop composition and freezing characteristics that bracket those expected in the upper troposphere. The heterogeneous freezing rates of insoluble atmospheric aerosols are parameterized based on published freezing rates of carbonaceous particles. Process model simulations how that the potential variability in ice formation in cirrus clouds is much greater if heterogeneous freezing nucleation is considered in addition to homogeneous freezing. The impact of insoluble aerosols on ice formation is inferred to increase with insoluble particle size and with the fraction of soluble aerosols comabring insoluble components. The maximram impact of heterogeneous nucleation is indicated for vertical motions less than 0.2 m s -• and for insoluble components being associated with at least 10% of all soluble aerosols. The wide range of ice crystal concentrations observed in cirrus is most consistent with the occurrence of both heterogeneous and homogeneous ice formation processes. These conclusions are partially supported by existing observations of aerosols and cloud microphysical characteristics in upper tropospheric louds but require new measurements for confirmation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas-aerosol-cirrus interactions

This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry 5 of aerosol precursors, binary homogeneous aerosol nucleation, h...

متن کامل

Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications

This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, hom...

متن کامل

Timescale analysis of aerosol sensitivity during homogeneous freezing and implications for upper tropospheric water vapor budgets

[1] Using timescales for the generation and depletion of water vapor, we predict aerosol sensitivity in clouds formed by homogeneous freezing. Our timescale analysis explains why aerosol sensitivity increases dramatically with ice deposition coefficients (ai) 0.1, and also why aerosol sensitivity increases as vertical velocity increases, temperature decreases, aerosol number decreases, and aero...

متن کامل

On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space–borne lidar

The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can b...

متن کامل

Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model

[1] The influence of anthropogenic aerosol (sulfate and soot) on upper tropospheric (UT) clouds through ice nucleation is studied using the NCAR Community Atmospheric Model Version 3 (CAM3) with a double moment ice microphysics treatment coupled to a global aerosol model (LLNL/UMich IMPACT). Present-day and preindustrial simulations are performed and compared for two scenarios. In the first sce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007