Covering Directed Graphs by In-Trees

نویسندگان

  • Naoyuki Kamiyama
  • Naoki Katoh
چکیده

Given a directed graphD = (V,A) with a set of d specified vertices S = {s1, . . . , sd} ⊆ V and a function f : S → Z+ where Z+ denotes the set of non-negative integers, we consider the problem which asks whether there exist ∑d i=1 f(si) in-trees denoted by Ti,1, Ti,2, . . . , Ti,f(si) for every i = 1, . . . , d such that Ti,1, . . . , Ti,f(si) are rooted at si, each Ti,j spans vertices from which si is reachable and the union of all arc sets of Ti,j for i = 1, . . . , d and j = 1, . . . , f(si) covers A. In this paper, we prove that such set of in-trees covering A can be found by using an algorithm for the weighted matroid intersection problem in time bounded by a polynomial in ∑d i=1 f(si) and the size of D. Furthermore, for the case where D is acyclic, we present another characterization of the existence of in-trees covering A, and then we prove that intrees covering A can be computed more efficiently than the general case by finding maximum matchings in a series of bipartite graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The topological ordering of covering nodes

The topological ordering algorithm sorts nodes of a directed graph such that the order of the tail of each arc is lower than the order of its head. In this paper, we introduce the notion of covering between nodes of a directed graph. Then, we apply the topological orderingalgorithm on graphs containing the covering nodes. We show that there exists a cut set withforward arcs in these...

متن کامل

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

Generalized H-Coloring and H-Covering of Trees

We study H(p, q)-colorings of graphs, for H a fixed simple graph and p, q natural numbers, a generalization of various other vertex partitioning concepts such as H-covering. An H-cover of a graph G is a local isomorphism between G and H , and the complexity of deciding if an input graph G has an H-cover is still open for many graphs H . In this paper we show that the complexity of H(2p, q)-COLO...

متن کامل

Mixed Covering Arrays on Graphs

We give upper and lower bounds on the size of mixed covering arrays on graphs based on graph homomorphisms. We provide constructions for covering arrays on graphs based on basic graph operations. In particular, we construct optimal mixed covering arrays on trees, cycles and bipartite graphs; the constructed optimal objects have the additional property of being nearly point balanced.

متن کامل

A method for analyzing the problem of determining the maximum common fragments of temporal directed tree, that do not change with time

In this study two actual types of problems are considered and solved: 1) determining the maximum common connected fragment of the T-tree (T-directed tree) which does not change with time; 2) determining all maximum common connected fragments of the T-tree (T-directed tree) which do not change with time. The choice of the primary study of temporal directed trees and trees is justified by the wid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Optim.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2008