Regularity of Solutions to the Stokes Equations under a Certain Nonlinear Boundary Condition
نویسنده
چکیده
The regularity of a solution to the variational inequality for the Stokes equation is considered. The inequality describes the steady motion of the viscous incompressible uid under a certain unilateral constrain of friction type. Firstly the solution is approximated by solutions to a regularized problem which is introduced by Yosida's regularization for a multi-valued opearator. Then we establish a regularity result to the regularized problem. The regularity of the solution to the original inequality follows by the limiting argument.
منابع مشابه
Analyticity of solutions to nonlinear parabolic equations on manifolds and an application to Stokes flow
We prove a general regularity result for fully nonlinear, possibly nonlocal parabolic Cauchy problems under the assumption of maximal regularity for the linearized problem. We apply this result to show joint spatial and temporal analyticity of the moving boundary in the problem of Stokes flow driven by surface tension.
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملGlobal Regularity Criterion for the 3d Navier–stokes Equations Involving One Entry of the Velocity Gradient Tensor
In this paper we provide a sufficient condition, in terms of only one of the nine entries of the gradient tensor, i.e., the Jacobian matrix of the velocity vector field, for the global regularity of strong solutions to the three–dimensional Navier–Stokes equations in the whole space, as well as for the case of periodic boundary conditions. AMS Subject Classifications: 35Q35, 65M70
متن کاملRegularity of weak solutions of the compressible barotropic Navier-Stokes equations
Regularity and uniqueness of weak solutions of the compressible barotropic NavierStokes equations with constant viscosity coefficients is proven for small time in dimension N = 2, 3 under periodic boundary conditions. In this paper, the initial density is not required to have a positive lower bound and the pressure law is assumed to satisfy a condition that reduces to P (ρ) = aρ with γ > 1 (in ...
متن کاملM ay 2 00 5 Regularity criteria for suitable weak solutions of the Navier - Stokes equations near the boundary
We present some new regularity criteria for “suitable weak solutions” of the Navier-Stokes equations near the boundary in dimension three. We prove that suitable weak solutions are Hölder continuous up to the boundary provided that the scaled mixed norm L x,t with 3/p + 2/q ≤ 2, 2 < q ≤ ∞, (p, q) 6= (3/2,∞), is small near the boundary. Our methods yield new results in the interior case as well....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000