The calcium sensor CBL7 modulates plant responses to low nitrate in Arabidopsis.
نویسندگان
چکیده
Calcium (Ca(2+)) serves as a critical messenger in a number of adaptation and developmental processes. In plants, CBL family represents a unique group of calcium sensors that decodes calcium signals. Several CBL members have been functionally characterized in the model plant Arabidopsis thaliana, but the role of CBL7 remains unknown. Here, we report that CBL7 is involved in the regulation of low-nitrate response in Arabidopsis. Expression of CBL7 was predominant in the root of young seedlings and substantially induced by nitrate starvation. Cbl7 mutant was more inhibited in root growth upon nitrate starvation compared to the wild-type. Interestingly, the growth arrest of cbl7 under low-nitrate conditions relied on acidic pH. Further analyses revealed that expression of two high-affinity nitrate transporter genes, NRT2.4 and NRT2.5, was down-regulated in cbl7 under nitrogen-starvation condition. Accordingly, the cbl7 mutant plants retained lower nitrate content than wild-type plants under low-nitrate condition. Taken together, our results uncover a novel role of CBL7 in the response to nitrate deficiency in Arabidopsis.
منابع مشابه
Nutrient Signaling by Nitrate and Calcium.
An especially intriguing aspect of nutrients is their capacity to serve as signals. Nutrient signaling pathways play key roles in plant growth and development and can interact and overlap in interesting ways. In this issue, Riveras et al. (2015) report on two plant macronutrients, nitrate and calcium, and show how responses induced by nitrate depend in part on calcium signaling mechanisms. The ...
متن کاملGenomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate.
Microarray and RNA gel blot analyses were performed to identify Arabidopsis genes that responded to nitrate at both low (250 microM) and high (5 to 10 mM) nitrate concentrations. Genes involved directly or indirectly with nitrite reduction were the most highly induced by nitrate. Most of the known nitrate-regulated genes (including those encoding nitrate reductase, the nitrate transporter NRT1,...
متن کاملThe calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis.
Calcium plays a pivotal role in plant responses to several stimuli, including pathogens, abiotic stresses, and hormones. However, the molecular mechanisms underlying calcium functions are poorly understood. It is hypothesized that calcium serves as second messenger and, in many cases, requires intracellular protein sensors to transduce the signal further downstream in the pathways. The calcineu...
متن کاملThe Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis.
Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly...
متن کاملUpdate on Calcium Signaling Calcium Signaling through Protein Kinases. The Arabidopsis Calcium-Dependent Protein Kinase Gene Family
In plants, numerous Ca -stimulated protein kinase activities occur through calcium-dependent protein kinases (CDPKs). These novel calcium sensors are likely to be crucial mediators of responses to diverse endogenous and environmental cues. However, the precise biological function(s) of most CDPKs remains elusive. The Arabidopsis genome is predicted to encode 34 different CDPKs. In this Update, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 468 1-2 شماره
صفحات -
تاریخ انتشار 2015