Neighbor Line-Based Locally Linear Embedding

نویسندگان

  • De-Chuan Zhan
  • Zhi-Hua Zhou
چکیده

Locally linear embedding (Lle) is a powerful approach for mapping high-dimensional data nonlinearly to a lower-dimensional space. However, when the training examples are not densely sampled, Lle often returns invalid results. In this paper, the Nle (Neighbor Line-based Lle) approach is proposed, which generates some virtual examples with the help of neighbor line such that the Lle learning can be executed on an enriched training set. Experiments show that Nle outperforms Lle in visualization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised dimension reduction mappings

Abstract. We propose a general principle to extend dimension reduction tools to explicit dimension reduction mappings and we show that this can serve as an interface to incorporate prior knowledge in the form of class labels. We explicitly demonstrate this technique by combining locally linear mappings which result from matrix learning vector quantization schemes with the t-distributed stochast...

متن کامل

5 Approximate Nearest Neighbor Regression in Very High Dimensions

Fast and approximate nearest-neighbor search methods have recently become popular for scaling nonparameteric regression to more complex and high-dimensional applications. As an alternative to fast nearest neighbor search, training data can also be incorporated online into appropriate sufficient statistics and adaptive data structures, such that approximate nearestneighbor predictions can be acc...

متن کامل

Image feature optimization based on nonlinear dimensionality reduction

Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We ...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Feature extraction for nearest neighbor classification: Application to gender recognition

In this article, we perform an extended analysis of different face-processing techniques for gender recognition problems. Prior research works show that support vector machines (SVM) achieve the best classification results. We will show that a nearest neighbor classification approach can reach a similar performance or improve the SVM results, given an adequate selection of features of the input...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006