The Design, Fabrication and Characterization of Silicon Oxide Nitride Oxide Semiconductor Thin Film Gates for Use in Modeling Spiking Analog Neural Circuits
نویسندگان
چکیده
This Thesis details the design, fabrication and characterization of organic semiconductor field effect transistors with silicon oxide-nitride-oxide-semiconductor (SONOS) gates for use in spiking analog neural circuits. The results are divided into two main sections. First, the SONOS structures, parallel plate capacitors and field effect transistors, were designed, fabricated and characterized. Second, these results are used to model spiking analog neural circuits. The modeling is achieved using PSPICE based software. The initial design work begins with an analysis of the basic SONOS structure. The existence of the ultrathin layers of the SONOS structure is confirmed with the use of Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) scans of device stacks. Parallel plate capacitors were fabricated prior to complete transistors due to the significantly less processing required. The structure and behaviour of these capacitors is similar to that of the transistor gates which allows for the optimization of the structures prior to the fabrication of the transistors. These capacitors were fabricated using the semiconductor materials of; crystalline silicon, amorphous silicon, Zinc Oxide, copper phthalocyanine (CuPc) and tris 8-hydroxyquinolinato aluminium (AlQ3). These devices are then subjected to standard capacitance voltage (C-V) analysis. The results of this analysis demonstrate that the inclusion of SONOS structures in the capacitors (and transistors) result in a hysteresis which is the result of charge accumulation in the nitride layer of the SONOS structure.. iv This effect can be utilized as an imbedded memory. Standard control devices were fabricated and analysed and no significant hysteresis effect was observed. The hysteresis effect is only observed after the SONOS devices are subject to high voltages (approximately 14 volts) which allows tunneling through a thin oxide layer into traps in the silicon nitride layer. This analysis was conducted to confirm that the SONOS structure causes the memory effect, not the existence of interface states that can be charged and discharged. The next step was to design and fabricate amorphous semiconductor field effect transistors with and without the SONOS structure. First FETs without the SONOS gates were fabricated using amorphous semiconductor materials; Zinc Oxide, CuPc and AlQ3 and then the devices were characterized. This initial step confirmed the functionality of these basic devices and the ability to fabricate working control samples. Next, SONOS gate TFTs were fabricated using CuPc as the semiconductor material. The characterization of these devices confirmed the ability to shift the transfer characteristics of the devices through a …
منابع مشابه
Modeling of spiking analog neural circuits using organic semiconductor thin film transistors with silicon oxide nitride semiconductor gates
This paper uses the results of the characterization of amorphous semiconductor thin film transistors (TFTs) with the quasi-permanent memory structure referred to as silicon oxide nitride semiconductor (SONOS) gates, to model spiking neural circuits. SONOS gates were fabricated and characterized. In addition, MOSFETs using organic copper phthalocyanine (CuPc) were fabricated with these SONOS gat...
متن کاملAnalog Very Large Scale Integration Implementation of Dendrite Segment with Voltage Dependent Spiking Behavior
I. INTRODUCIION The first silicon retina, designed by Mead and Mahowald in the late 1980's [I], was an analog Very Large Scale Integration (aVLSI) system. The success of early Integrated Circuit (IC) implementations of biologically accurate neural circuits led to the exploration of many other computational systems, as well as work on development of silicon models of single neurons [2]. These aV...
متن کاملCharacterization of silicon/oxide/nitride layers by x-ray photoelectron spectroscopy
Core-level intensities for Si 2p , Si 2s , O 1s , and N 1s were measured by x-ray photoelectron spectroscopy in bulk samples of silicon, SiO2 and Si3N4. A complete and consistent set of intensity ratios is given and applied for calculations of thickness and stoichiometry in thin Si/oxide/nitride layers, which can be used for gate dielectrics in advanced metal–oxide–semiconductor field-effect tr...
متن کاملMaterials and fabrication sequences for water soluble silicon integrated circuits at the 90nm node
Articles you may be interested in Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits Appl. Compact models considering incomplete voltage swing in complementary metal oxide semiconductor circuits at ultralow voltages: A circuit perspective on limits of switching energy Monolithically integrated low-loss silic...
متن کاملPreparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices
In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and silicon substrates using single ion beam sputtering technique. The physical and chemical properties of prepared films were investigated by different characterization technique. X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...
متن کامل