Genetic Induction of the Warburg Effect Inhibits Tumor Growth
نویسندگان
چکیده
Mitochondrial carriers are integral proteins of the inner membrane that allow for the exchange of metabolites, nucleotides, and cofactors between the cytosol and the mitochondria and thus, enact a variety of energetic adjustments [1,2]. The mitochondrial citrate carrier, SLC25A1 or CIC, catalyses the efflux of citrate from the mitochondrial matrix in exchange for cytosolic malate. Mitochondrial citrate is necessary for the Krebs cycle and oxidative phosphorylation (OXOPHOS), while cytosolic citrate provides the only carbon source for fatty acids and sterol biosynthesis. In addition, cytoplasmic citrate is an allosteric inhibitor of enzymes involved in glucose catabolism, particularly of phosphofructokinase (PFK), while at the same time providing a source for the production of NAD+ (via the action of citrate lyase and malate dehydrogenase), which can be used to support glycolysis. Because tumor cells display enhanced glycolytic capacity and enhanced rates of de novo lipogenesis, these activities would theoretically place CIC at a nodal point in the regulation of metabolic pathways and mitochondrial activity in cancer. In this issue of Oncotarget, Avantaggiati and colleagues [3] provide novel findings that suggest that inhibition of tumor growth brought about by either genetic or biochemical inhibition of CIC occurs through unanticipated and fundamentally important new mechanisms that affect both cellular metabolism and viability. The authors show that while the inhibition of CIC blunted de novo lipid synthesis as expected, CIC inhibition also resulted in destabilization of the mitochondrial membrane potential, enhanced ROS (reactive oxygen species) production and increased production of L-lactate, indicative of a rewiring of metabolism towards glycolysis. The major implications of their findings is that a key component of CIC's ability to support proliferation of tumor cells might be in fact be the preservation of mitochondrial pathways of energy production while limiting the glycolytic addiction of tumor cells, essentially suppressing the Warburg effect, a metabolic trait that is proposed to promote malignancy. In addition, the authors provide compelling new evidence that CIC inhibition results in mitochondrial depletion and degradation via autophagy. In support of these data, blocking of autophagy rescues the anti-proliferative effects due to CIC loss both in tumor cells and in the model organism Zebrafish. These studies describe a previously unknown role for CIC in regulating mitochondrial homeostasis and autophagy/mitophagy and are important and provocative for several reasons. The Warburg theory proposes that the mitochondria of cancer cells are unable to provide energy via oxidative phosphorylation, and therefore rely upon glycolysis for …
منابع مشابه
Human Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect
Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similar...
متن کاملMiR‐133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle‐splicer polypyrimidine tract‐binding protein 1
The metabolism in tumor cells shifts from oxidative phosphorylation to glycolysis even in an aerobic environment. This phenomenon is known as the Warburg effect. This effect is regulated mainly by polypyrimidine tract-binding protein 1 (PTBP1), which is a splicer of the mRNA for the rate-limiting enzymes of glycolysis, pyruvate kinase muscle 1 and 2 (PKM1 and PKM2). In the present study, we dem...
متن کاملEffects of Enoxaparin Emulsion on Dimethylbenzanthracene-induced Breast Cancer in Female Rats
Background : Enoxaparin is an anticoagulant medication. Anticoagulation inhibits tumor cell–mediated release of angiogenic proteins and diminishes angiogenic response. Angiogenesis is an important event in various cancers such as breast cancer. Angiogenesis provide oxygen and nutrients to tumor cells and causes tumor progression. The aim of the present study was to evaluate the anti-angio...
متن کاملRRAD inhibits the Warburg effect through negative regulation of the NF-κB signaling
Cancer cells preferentially use aerobic glycolysis to meet their increased energetic and biosynthetic demands, a phenomenon known as the Warburg effect. Its underlying mechanism is not fully understood. RRAD, a small GTPase, is a potential tumor suppressor in lung cancer. RRAD expression is frequently down-regulated in lung cancer, which is associated with tumor progression and poor prognosis. ...
متن کاملTyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth.
The Warburg effect describes a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose even in the presence of oxygen. To better understand how tyrosine kinase signaling, which is commonly increased in tumors, regulates the Warburg effect, we performed phosphoproteomic studies. We found that oncogenic forms of fibr...
متن کاملHuman Papillomavirus 16 E6 Contributes HIF-1α Induced Warburg Effect by Attenuating the VHL-HIF-1α Interaction
Cervical cancer is still one of the leading causes of cancer deaths in women worldwide, especially in the developing countries. It is a major metabolic character of cancer cells to consume large quantities of glucose and derive more energy by glycolysis even in the presence of adequate oxygen, which is called Warburg effect that can be exaggerated by hypoxia. The high risk subtype HPV16 early o...
متن کامل