Aligning Users across Social Networks Using Network Embedding
نویسندگان
چکیده
In this paper, we adopt the representation learning approach to align users across multiple social networks where the social structures of the users are exploited. In particular, we propose to learn a network embedding with the followership/followee-ship of each user explicitly modeled as input/output context vector representations so as to preserve the proximity of users with “similar” followers/followees in the embedded space. For the alignment, we add both known and potential anchor users across the networks to facilitate the transfer of context information across networks. We solve both the network embedding problem and the user alignment problem simultaneously under a unified optimization framework. The stochastic gradient descent and negative sampling algorithms are used to address scalability issues. Extensive experiments on real social network datasets demonstrate the effectiveness and efficiency of the proposed approach compared with several state-of-the-art methods.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملIntegrated Anchor and Social Link Predictions across Social Networks
To enjoy more social network services, users nowadays are usually involved in multiple online social media sites at the same time. Across these social networks, users can be connected by both intranetwork links (i.e., social links) and inter-network links (i.e., anchor links) simultaneously. In this paper, we want to predict the formation of social links among users in the target network as wel...
متن کاملPerform Three Data Mining Tasks with Crowdsourcing Process
For data mining studies, because of the complexity of doing feature selection process in tasks by hand, we need to send some of labeling to the workers with crowdsourcing activities. The process of outsourcing data mining tasks to users is often handled by software systems without enough knowledge of the age or geography of the users' residence. Uncertainty about the performance of virtual user...
متن کاملThe Role of Online Social Networks in Users' Everyday-Life Information Seeking
Background and Aim: Considering the increasing number of users who interact with online social networks, it can be inferred that these networks have become an essential part of users' lives and play different roles in their everyday life. Therefore, the present study aims to explore the role of these networks in users' everyday-life information seeking. Method: This research is an applied resea...
متن کاملUsing an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...
متن کامل