Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems.

نویسندگان

  • P B Hylemon
  • J Harder
چکیده

Isoprenoic compounds play a major part in the global carbon cycle. Biosynthesis and mineralization by aerobic bacteria have been intensively studied. This review describes our knowledge on the anaerobic metabolism of isoprenoids, mainly by denitrifying and fermentative bacteria. Nitrate-reducing beta-Proteobacteria were isolated on monoterpenes as sole carbon source and electron donor. Thauera spp. were obtained on the oxygen-containing monoterpenes linalool, menthol, and eucalyptol. Several strains of Alcaligenes defragrans were isolated on unsaturated monoterpenes as growth substrates. A novel denitrifying beta-Proteobacterium, strain 72Chol, mineralizes cholesterol completely to carbon dioxide. Physiological studies showed the presence of several oxidative pathways in these microorganisms. Investigations by organic geochemists indicate possible contributions of anaerobes to early diagenetic processes. One example, the formation of p-cymene from monoterpenes, could indeed be detected in methanogenic enrichment cultures. In man, cholic acid (CA) and chenodeoxycholic acid (CDCA), are synthesized in the liver from cholesterol. During their enterohepatic circulation, bile acids are biotransformed by the intestinal microflora into a variety of metabolites. Known bacterial biotranformations of conjugated bile acids include: deconjugation, oxidation of hydroxy groups at C-3, C-7 and C-12 with formation of oxo bile acids and reduction of these oxo groups to either alpha- or beta-configuration. Quantitatively, the most important bacterial biotransformation is the 7 alpha-dehydroxylation of CA and CDCA yielding deoxycholic acid and lithocholic acid, respectively. The 7 alpha-dehydroxylation of CA occurs via a novel six-step biochemical pathway. The genes encoding several enzymes that either transport bile acids or catalyze various reactions in the 7 alpha-dehydroxylation pathway of Eubacterium sp. strain VPI 12708 have been cloned, expressed in Escherichia coli, purified, and characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opportunistic emissions of volatile isoprenoids.

Isoprene, monoterpenes and sesquiterpenes are synthesized and emitted by some plant species, but not all plant species have this ability. These volatile, nonessential isoprenoid compounds share the same biochemical precursors as larger essential isoprenoids such as gibberellic acids and carotenoids. They have many protective and ecological functions for the plant species that produce them, but ...

متن کامل

The effects of the combination of bioplastic and its degrading bacteria (Genus Acidovorax) on the metabolic activity of anaerobic bacteria in Siberian sturgeon (Acipenser baerii) fingerlings hindgut by using CLPP

Community Level Physiological Profiles (CLPP) is novel method to evaluate microbial activity and diversity in ecosystems. According to the previous findings, poly-β-hydroxybutyrate (PHB) as a bio-control product, increases bacterial diversity in some aquatic animals. In this study, the effects of four experimental diets (control, combination of two PHB degrading bacteria, 2% PHB, bacteria+ 2% P...

متن کامل

Bile salt biotransformations by human intestinal bacteria.

Secondary bile acids, produced solely by intestinal bacteria, can accumulate to high levels in the enterohepatic circulation of some individuals and may contribute to the pathogenesis of colon cancer, gallstones, and other gastrointestinal (GI) diseases. Bile salt hydrolysis and hydroxy group dehydrogenation reactions are carried out by a broad spectrum of intestinal anaerobic bacteria, whereas...

متن کامل

Biotransformation of isoprenoids and shikimic acid derivatives by a vegetable enzymatic system.

In biotransformations carried out under similar conditions enzymatic systems from carrot (Daucus carota L.), celeriac (Apium graveolens L. var. rapaceum) and horse-radish (Armoracia lapathifolia Gilib.) hydrolyzed the ester bonds of acetates of phenols or alicyclic alcohols. Nevertheless, methyl esters of aromatic acids did not undergo hydrolysis. Alcohols were oxidized to ketones in a reversib...

متن کامل

Biosynthesis and Biotransformation of Bile Acids A

Introduction: Bile acids are steroidal compounds, which contain 24 carbon atoms. They can be classifi ed into two major groups: primary and secondary.The most abundant bile acids: The primary bile acids include cholic acid and chenodeoxycholic acid, while the major secondary bile acids are deoxycholic acid and litocholic acid. Bile acids are important physiological agents for intestinal absorpt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology reviews

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 1998