Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.

نویسندگان

  • Linda M Brennan
  • Mark W Widder
  • Michael K McAleer
  • Michael W Mayo
  • Alex P Greis
  • William H van der Schalie
چکیده

This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term storage and impedance-based water toxicity testing capabilities of fluidic biochips seeded with RTgill-W1 cells.

Rainbow trout gill epithelial cells (RTgill-W1) are used in a cell-based biosensor that can respond within one hour to toxic chemicals that have the potential to contaminate drinking water supplies. RTgill-W1 cells seeded on enclosed fluidic biochips and monitored using electric cell-substrate impedance sensing (ECIS) technology responded to 18 out of the 18 toxic chemicals tested within one ho...

متن کامل

A portable cell-based impedance sensor for toxicity testing of drinking water.

A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored by Electric Cell-...

متن کامل

Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.

The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses r...

متن کامل

Suitability of invertebrate and vertebrate cells in a portable impedance-based toxicity sensor: temperature mediated impacts on long-term survival.

Using ECIS (electric cell-substrate impedance sensing) to monitor the impedance of vertebrate cell monolayers provides a sensitive measure of toxicity for a wide range of chemical toxicants. One major limitation to using a cell-based sensor for chemical toxicant detection in the field is the difficulty in maintaining cell viability over extended periods of time prior to use. This research was p...

متن کامل

Selection of a battery of rapid toxicity sensors for drinking water evaluation.

Comprehensive identification of chemical contaminants in Army field water supplies can be a lengthy process, but rapid analytical methods suitable for field use are limited. A complementary approach is to directly measure toxicity instead of individual chemical constituents. Ten toxicity sensors utilizing enzymes, bacteria, or vertebrate cells were tested to determine the minimum number of sens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2016