Investigating individual chromopores within single porous silicon nanoparticles
نویسندگان
چکیده
We use single nanoparticle luminescence microscopy to determine a distribution of individual chromophores present in porous Si nanoparticles. From these distributions, we determine the average number of emitting chromophores in each nanoparticle and the fluorescence emission count rate of a single chromophore within the porous silicon nanoparticle. We also show that the same size nanoparticles prepared under two different electrochemical conditions have different fluorescence peak maxima, and exhibit different chromophore number distributions, consistent with the quantum confinement model for the luminescence in porous silicon. © 2001 American Institute of Physics. @DOI: 10.1063/1.1355764#
منابع مشابه
Optical anisotropy in individual porous silicon nanoparticles containing multiple chromophores.
Polarization anisotropy is investigated in single porous silicon nanoparticles containing multiple chromophores. Two classes of nanoparticles, low current density and high current density, are studied. Low current density samples exhibit red-shifted spectra and contain only one or two chromophores. High current density particles, on average, contain less than four chromophores and display a blu...
متن کاملA Solid State Nanopore Device for Investigating the Magnetic Properties of Magnetic Nanoparticles
In this study, we explored magnetic nanoparticles translocating through a nanopore in the presence of an inhomogeneous magnetic field. By detecting the ionic current blockade signals with a silicon nitride nanopore, we found that the translocation velocity that is driven by magnetic and hydrodynamic forces on a single magnetic nanoparticle can be accurately determined and is linearly proportion...
متن کاملRoom Temperature Crystallization of Hydroxyapatite in Porous Silicon Structures
Porous silicon (PS) substrates, with different pore sizes and morphology, have been used to crystallize hydroxyapatite (HA) nano-fibers by an easy and economical procedure using a co-precipitation method at room temperature. In situ formation of HA nanoparticles, within the meso- and macroporous silicon structure, resulted in the formation of nanometer-sized hydroxyapatite crystals on/within th...
متن کاملTailored porous silicon microparticles: fabrication and properties.
The use of mesoporous silicon particles for drug delivery has been widely explored thanks to their biodegradability and biocompatibility. The ability to tailor the physicochemical properties of porous silicon at the micro- and nanoscale confers versatility to this material. A method for the fabrication of highly reproducible, monodisperse, mesoporous silicon particles with controlled physical c...
متن کاملBand-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.
Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low...
متن کامل