Low temperature limits for root growth in alpine species are set by cell differentiation
نویسندگان
چکیده
Plant growth in cold climates is not limited by carbon assimilation (source activity) but rather by reduced carbon investment into new tissues (sink limitation). It has been hypothesized that all cold-adapted plants face similar growth constraints at low temperature mainly associated with the formation of new tissues. To explore the thermal limitation of plant tissue formation, we studied root growth and anatomical root tissue characteristics in four cold-adapted alpine species (Ranunculus glacialis, Rumex alpinus, Tussilago farfara, Poa alpina), grown in thermostated soils with a vertical temperature gradient approaching 1 °C. Above-ground plant organs were exposed to typical alpine climate conditions (high solar radiation and cool nights) at 2440 m a.s.l. in the Swiss Alps to assure continuous source activity. Image-based measurements of root growth (root elongation rates at 12-h intervals, RERs) were combined with anatomical examinations in thermally constrained root tips as well as with a functional growth analysis of entire plants. Temperatures in the range 0.8 to 1.4 °C were denoted as critically low temperature thresholds for root formation across the four species. The RERs per 12 h revealed that roots kept extending at low rates at 0.7-1.2 °C but cell elongation and xylem lignification were clearly inhibited in the terminal zones of root tips. Roots exposed to temperatures between 1 and 5 °C showed strongly reduced elongation rates so that these roots contributed very little to the entire root system compared to control roots grown at 10 °C. Hardly any secondary roots were formed at temperatures below 5 °C and total root mass was substantially lower (74 % reduction in comparison to control), also the above-ground biomass was reduced by 23 %. Cell elongation and differentiation rather than cell division control length and shape of root cells at the low temperature limit of growth. Lignification of root xylem is clearly constrained at temperatures below 3 °C.
منابع مشابه
Fine Root Abundance and Dynamics of Stone Pine (Pinus cembra) at the Alpine Treeline Is Not Impaired by Self-shading
Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees' root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5-7°C, field studies exploring the soil temperature - r...
متن کاملA Review of the Theories to Explain Arctic and Alpine Treelines Around the World
Forest growth is restricted at high latitudes and high elevations, and the limits of tree growth in these environments are dramatically marked by the treeline transition from vertical, erect tree stems to prostrate, stunted shrub forms. However, after 4 centuries of research, there is still debate over the precise mechanism that causes Arctic and alpine treelines. We review the various theories...
متن کاملWharton’s Jelly Mesenchymal Stem Cell: Various Protocols for Isolation and Differentiation of Hepatocyte-Like Cells; Narrative Review
There are several differentiation methods for mesenchymal stem cells (MSCs) into hepatocyte-like cell. Investigators reported various hepatic differentiation protocols such as modifying culturing conditions or using various growth factors/cytokines. In this literature review, we compared different MSCs extraction and isolation protocols from Wharton’s jelly (WJ) and explored various MSCs differ...
متن کاملStoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau
Leaf nitrogen (N) and phosphorus (P) have been used widely in the ecological stoichiometry to understand nutrient limitation in plant. However,few studies have focused on the relationship between root nutrients and environmental factors. The main objective of this study was to clarify the pattern of root and leaf N and P concentrations and the relationships between plant nitrogen (N) and phosph...
متن کاملسلولهای بنیادی bulge فولیکول مو: منبعی جدید برای بازسازی پوست
Emergence and spread of various diseases in the past century have been associated with many problems for the health care providers. Now a days, with advancement of technology, new methods such as cell therapy, are available, efficient and successful in some clinical areas. To use any cell, it is necessary to identify its source, so herein, we reviewed the literature of a new source of adult ste...
متن کامل