Random Walks and Brownian Motion

نویسنده

  • Jacob Kagan
چکیده

Tags for today's lecture: Donsker's invariance priciple, Stochastic integration, Itô's formula In this lecture we show an application of Donsker's invariance principle and then proceed to the construction of Itô's stochastic integral. We recall the definitions and give a simple example of an application of the invariance principle. Consider a random walk S n = Σ n i=1 x i with E(x) = 0, E(x 2) = 1. Let S(t) be its linear interpolation and define S * n (t) = S(nt) √ n t ∈ [0, 1]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing a sequence of random walks strongly converging to Brownian motion

It is one of the most basic facts in probability theory that random walks, after proper rescaling, converge to Brownian motion. However, Donsker’s classical theorem [Don51] only states a convergence in law. Various results of almost sure convergence exist (see e.g. [KMT75, KMT76] and the references therein) but involves rather intricate relations between the converging sequence of random walks ...

متن کامل

Brownian Bridge Asymptotics for Random Mappings

The Joyal bijection between doubly-rooted trees and mappings can be lifted to a transformation on function space which takes tree-walks to mapping-walks. Applying known results on weak convergence of random tree walks to Brownian excursion, we give a conceptually simpler rederivation of the 1994 Aldous-Pitman result on convergence of uniform random mapping walks to reeecting Brownian bridge, an...

متن کامل

Diffusion constants and martingales for senile random walks

We derive diffusion constants and martingales for senile random walks with the help of a time-change. We provide direct computations of the diffusion constants for the time-changed walks. Alternatively, the values of these constants can be derived from martingales associated with the timechanged walks. Using an inverse time-change, the diffusion constants for senile random walks are then obtain...

متن کامل

Balls–in–boxes Duality for Coalescing Random Walks and Coalescing Brownian Motions

We present a duality relation between two systems of coalescing random walks and an analogous duality relation between two systems of coalescing Brownian motions. Our results extends previous work in the literature and we apply it to the study of a system of coalescing Brownian motions with Poisson immigration.

متن کامل

A Simple Construction of the Fractional Brownian Motion

In this work we introduce correlated random walks on Z. When picking suitably at random the coefficient of correlation, and taking the average over a large number of walks, we obtain a discrete Gaussian process, whose scaling limit is the fractional Brownian motion. We have to use two radically different models for both cases 1 2 ≤ H < 1 and 0 < H < 1 2 . This result provides an algorithm for t...

متن کامل

The Ruin Problem and Cover times of Asymetric Ran- Dom Walks and Brownian Motions

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011