Contributions to Automated Realtime Underwater Navigation

نویسندگان

  • Michael Jordan Stanway
  • David E. Hardt
  • James C. Preisig
چکیده

This dissertation presents three separate–but related–contributions to the art of underwater navigation. These methods may be used in postprocessing with a human in the loop, but the overarching goal is to enhance vehicle autonomy, so the emphasis is on automated approaches that can be used in realtime. The three research threads are: i) in situ navigation sensor alignment, ii) dead reckoning through the water column, and iii) model-driven delayed measurement fusion. Contributions to each of these areas have been demonstrated in simulation, with laboratory data, or in the field–some have been demonstrated in all three arenas. The solution to the in situ navigation sensor alignment problem is an asymptotically stable adaptive identifier formulated using rotors in Geometric Algebra. This identifier is applied to precisely estimate the unknown alignment between a gyrocompass and Doppler velocity log, with the goal of improving realtime dead reckoning navigation. Laboratory and field results show the identifier performs comparably to previously reported methods using rotation matrices, providing an alignment estimate that reduces the position residuals between dead reckoning and an external acoustic positioning system. The Geometric Algebra formulation also encourages a straightforward interpretation of the identifier as a proportional feedback regulator on the observable output error. Future applications of the identifier may include alignment between inertial, visual, and acoustic sensors. The ability to link the Global Positioning System at the surface to precision dead reckoning near the seafloor might enable new kinds of missions for autonomous underwater vehicles. This research introduces a method for dead reckoning through the water column using water current profile data collected by an onboard acoustic Doppler current profiler. Overlapping relative current profiles provide information to simultaneously estimate the vehicle velocity and local ocean current–the vehicle velocity is then integrated to estimate position. The method is applied to field data using online bin average, weighted least squares, and recursive least squares implementations. This demonstrates an autonomous navigation link between the surface and the seafloor without any dependence on a ship or external acoustic tracking systems. 3 Finally, in many state estimation applications, delayed measurements present an interesting challenge. Underwater navigation is a particularly compelling case because of the relatively long delays inherent in all available position measurements. This research develops a flexible, model-driven approach to delayed measurement fusion in realtime Kalman filters. Using a priori estimates of delayed measurements as augmented states minimizes the computational cost of the delay treatment. Managing the augmented states with time-varying conditional process and measurement models ensures the approach works within the proven Kalman filter framework–without altering the filter structure or requiring any ad-hoc adjustments. The end result is a mathematically principled treatment of the delay that leads to more consistent estimates with lower error and uncertainty. Field results from dead reckoning aided by acoustic positioning systems demonstrate the applicability of this approach to real-world problems in underwater navigation. Thesis Supervisor: Dana R. Yoerger Title: Senior Scientist, Woods Hole Oceanographic Institution

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

Cognitive Cooperative Control for Autonomous Underwater Vehicles An overview of achievements in the first project year

The aim of the EU-project "Cooperative Cognitive Control for Autonomous Underwater Vehicles (Co3AUVs)" is to develop, implement and test advanced cognitive systems for coordination and cooperative control of multiple AUVs. Several aspects are investigated including 3D perception and mapping, cooperative situation awareness, deliberation and navigation as well as behavioral control strictly link...

متن کامل

طراحی و پیاده‌سازی الگوریتم ناوبری AHRS/GPS/DR برای رونده‌های زیرسطحی خودگردان با برد بلند و ماندگاری بالا در زیر آب

Time-growing navigation error due to inevitable measurement errors in the MEMS-grade inertial sensor is one of the main challenges in low-cost inertial navigation systems (INSs). This paper aims to develop AHRS/GPS/DR integrated navigation algorithm for long-range autonomous underwater vehicle (AUV). Proper performance in deals with long-term GPS outage is the main advantage of the proposed low...

متن کامل

Toward Real-Time Visually Augmented Navigation for Autonomous Search and Inspection of Ship Hulls and Port Facilities

This paper reports on current research to automate the task of ship hull inspection and search using autonomous underwater vehicles (AUVs). We describe an automated feature-based navigation (FBN) and mapping framework that provides the AUV with precise in-situ hull-relative localization. Our vision-based perception approach eliminates the need for having to deploy additional navigation infrastr...

متن کامل

Geophysical Navigation of Autonomous Underwater Vehicles Using Geomagnetic Information ?

This paper addresses the general problem of Autonomous Underwater Vehicle navigation by exploiting the availability of terrain and geophysics-related data. Geophysical navigation algorithms are derived to estimate the position and velocity of an AUV in the presence of unknown ocean currents and sensor biases. The current implementation merges acoustic and magnetic measurements with dead-reckoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011