Experiments with Game Tree Search in Real-Time Strategy Games

نویسنده

  • Santiago Ontañón
چکیده

Game tree search algorithms such as minimax have been used with enormous success in turn-based adversarial games such as Chess or Checkers. However, such algorithms cannot be directly applied to real-time strategy (RTS) games because a number of reasons. For example, minimax assumes a turn-taking game mechanics, not present in RTS games. In this paper we present RTMM, a real-time variant of the standard minimax algorithm, and discuss its applicability in the context of RTS games. We discuss its strengths and weaknesses, and evaluate it in two real-time games.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

Game-Tree Search over High-Level Game States in RTS Games

From an AI point of view, Real-Time Strategy (RTS) games are hard because they have enormous state spaces, they are real-time and partially observable. In this paper, we present an approach to deploy gametree search in RTS games by using game state abstraction. We propose a high-level abstract representation of the game state, that significantly reduces the branching factor when used for game-t...

متن کامل

Puppet Search: Enhancing Scripted Behavior by Look-Ahead Search with Applications to Real-Time Strategy Games

Real-Time Strategy (RTS) games have shown to be very resilient to standard adversarial tree search techniques. Recently, a few approaches to tackle their complexity have emerged that use game state or move abstractions, or both. Unfortunately, the supporting experiments were either limited to simpler RTS environments (μRTS, SparCraft) or lack testing against state-of-the-art game playing agents...

متن کامل

Automatic Learning of Combat Models for RTS Games

Game tree search algorithms, such as Monte Carlo Tree Search (MCTS), require access to a forward model (or “simulator”) of the game at hand. However, in some games such forward model is not readily available. In this paper we address the problem of automatically learning forward models (more specifically, combats models) for two-player attrition games. We report experiments comparing several ap...

متن کامل

High-Level Representations for Game-Tree Search in RTS Games

From an AI point of view, Real-Time Strategy (RTS) games are hard because they have enormous state spaces, they are real-time and partially observable. In this paper, we explore an approach to deploy gametree search in RTS games by using game state abstraction, and explore the effect of using different abstractions over the game state. Different abstractions capture different parts of the game ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1208.1940  شماره 

صفحات  -

تاریخ انتشار 2012