Camptothecin sensitivity is mediated by the pleiotropic drug resistance network in yeast.

نویسندگان

  • R J Reid
  • E A Kauh
  • M A Bjornsti
چکیده

The antineoplastic alkaloid camptothecin interferes with the catalytic cycle of DNA topoisomerase I rendering it a cellular poison. Camptothecin stabilizes a covalent enzyme-DNA intermediate that is converted into lethal double strand DNA lesions during S phase of the cell cycle. Yeast SCT1 mutants were isolated in a screen for mutations in genes other than TOP1 that result in camptothecin resistance. Here we report SCT1 is allelic to PDR1 and that a Thr-879 to Met substitution in the PDR1-101 transcription factor confers multiple drug resistance. PDR1 regulates the expression of several gene products including the ATP-binding cassette transmembrane transport proteins PDR5, YOR1, and SNQ2. The PDR1 T879M mutant increased PDR5 transcription compared with wild-type PDR1 strains. Deletion of PDR1 or the downstream effector SNQ2 increased cell sensitivity to camptothecin, whereas deletion of YOR1 or PDR5 had little effect on camptothecin sensitivity. However, the camptothecin resistance accompanying GAL1-promoted overexpression of PDR5 suggests some substrate promiscuity among the ATP-binding cassette transporters. These data underscore the role of the pleiotropic drug resistance network in regulating camptothecin toxicity and are consistent with a model of decreased intracellular concentrations of camptothecin resulting from the increased expression of the SNQ2 transporter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat

Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...

متن کامل

Enhancing drug accumulation in Saccharomyces cerevisiae by repression of pleiotropic drug resistance genes with chimeric transcription repressors.

Yeast is a powerful model system for studying the action of small-molecule therapeutics. An important limitation has been low efficacy of many small molecules in yeast due to limited intracellular accumulation. We used the DNA binding domain of the pleiotropic drug resistance regulator pleiotropic drug resistance 1 (Pdr1) fused in-frame to transcription repressors to repress Pdr1-regulated gene...

متن کامل

Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin.

Yeast Saccharomyces cerevisiae strains that are permeable to the antitumor alkaloid camptothecin are killed by the drug if they express DNA topoisomerase I, the cellular target of the drug (J. Nitiss and J.C. Wang, Proc. Natl. Acad. Sci. USA, 85: 7501-7505, 1988). We show that in a yeast strain permeable to camptothecin but lacking DNA topoisomerase I, sensitivity to the drug was restored upon ...

متن کامل

Antitumor Drug Camptothecin Lacking Yeast DNA Topoisomerase I: Restoration of Sensitivity Expression of Human DNA Topoisomerase I in Yeast Cells

Yeast Saccharomyces cerevisiae strains that are permeable to the antitumor alkaloid camptothecin are killed by the drug if they express DNA topoisomerase I, the cellular target of the drug (J. Nitiss and J. C. Wang, Proc. Nati. Acad. Sci. USA, «5.-7501-7505,1988). We show that in a yeast strain permeable to camptothecin but lacking DNA topoisom erase I, sensitivity to the drug was restored upo...

متن کامل

Mutations in the yeast PDR3, PDR4, PDR7 and PDR9 pleiotropic (multiple) drug resistance loci affect the transcript level of an ATP binding cassette transporter encoding gene, PDR5.

The yeast pleiotropic (multiple drug) resistance gene PDR5 encodes a product with homology to a large number of membrane transport proteins including the mammalian multiple drug resistance family. In this study, we identified four genes on chromosome II that affect the steady-state level of PDR5 transcript in addition to a previously identified positive regulator, PDR1. The genes in question ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 18  شماره 

صفحات  -

تاریخ انتشار 1997