Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial-mesenchymal transition for oral cancer.

نویسندگان

  • Chuan Ma
  • Leilei Shi
  • Yu Huang
  • Lingyue Shen
  • Hao Peng
  • Xinyuan Zhu
  • Guoyu Zhou
چکیده

Activation of the epithelial to mesenchymal transition (EMT) in photodynamic therapy (PDT) can lead to the recurrence and progression of tumors. To enhance the effects of PDT, it is essential to inhibit the Wnt/β-catenin signaling pathway involved in EMT progression. Herein, we used polyethylene glycol-polyethyleneimine-chlorin e6 (PEG-PEI-Ce6) nanoparticles to efficiently deliver Wnt-1 small interfering RNA (siRNA) to the cytoplasm of KB cells (oral squamous cell carcinoma) that were subjected to PDT. Wnt-1 siRNA effectively inhibited the Wnt/β-catenin signaling pathway, reducing the expression of Wnt-1, β-catenin and vimentin that are crucial to the EMT. Combined with Wnt-1 siRNA, PEG-PEI-Ce6 nanoparticle mediated PDT inhibited cell growth and enhanced the cancer cell killing effect remarkably. Our results show the promise of combination therapy of PEG-PEI-Ce6 nanoparticles for delivery of Wnt-1 siRNA along with PDT in the treatment of oral cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel sLRP6E1E2 Inhibits Canonical Wnt Signaling, Epithelial-to-Mesenchymal Transition, and Induces Mitochondria-Dependent Apoptosis in Lung Cancer

Aberrant activation of the Wnt pathway contributes to human cancer progression. Antagonists that interfere with Wnt ligand/receptor interactions can be useful in cancer treatments. In this study, we evaluated the therapeutic potential of a soluble Wnt receptor decoy in cancer gene therapy. We designed a Wnt antagonist sLRP6E1E2, and generated a replication-incompetent adenovirus (Ad), dE1-k35/s...

متن کامل

Crosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...

متن کامل

N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial–mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation

Drug resistance greatly reduces the efficacy of doxorubicin-based chemotherapy in bladder cancer treatment; however, the underlying mechanisms are poorly understood. We aimed to investigate whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation, exerts synergistic cytotoxicity with doxorubicin in bladder cancer, and whether eI...

متن کامل

Gold nanoparticles as cancer theranostic agents

The application of nanotechnology in medicine involves using nanomaterials to develop novel therapeutic and diagnostic modalities. Given the unique physiochemical and optical properties of gold nanoparticle (GNP) such as good biocompatibility, nontoxic nature, surface properties and comparative stability, it has been widely studied in medicine, especially as a cancer theranostic agent. Th...

متن کامل

CUL4B promotes bladder cancer metastasis and induces epithelial-to-mesenchymal transition by activating the Wnt/β-catenin signaling pathway

Increased expression of cullin 4B (CUL4B) is linked to progression in several cancers. This study aims to explore the effects of CUL4B on bladder cancer (BC) metastasis and epithelial-to-mesenchymal transition (EMT) and potential correlation to the Wnt/β-catenin signaling pathway. We collected BC tissues and adjacent normal tissues from 124 BC patients. Quantitative real-time polymerase chain r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials science

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2017