Reducing phase noise degradation due to vibration of crystal oscillators
نویسنده
چکیده
In the radio communications industry, one major problem is the vibration induced on to a frequency standard. The most commonly used frequency standard is the crystal oscillator; as the crystal oscillator gets vibrated with varying force and frequencies of vibration the phase noise of the signal changes. As the phase noise increases, the signal to noise ratio decreases causing the likelihood of transmitting or receiving an incorrect signal to rise. This makes it critical to limit the phase noise increase that occurs in the frequency standard of the system. Mechanical isolation systems have been implemented in the industry to limit the system vibration that propagates to the frequency standard. These systems add weight and size to the overall design, which make them not ideal for all applications. For systems that can not use isolators, open loop cancellation has been implemented in past designs. This cancellation measures the vibration and subtracts it from the phase noise, but such a system has drawbacks with changes in vibration frequency and force. A closed loop design is suggested to correct this. In order to maximize performance an IQ modulation feedback system was designed. The feedback system utilizes information about both the vibration and the measured phase noise. It uses these two inputs concurrently to correct the output frequency of the crystal as it changes with vibration. In order to reduce the space and weight of the design, mechanical vibration dampeners were removed. After various tests and simulations it was determined that using this feedback to the oscillator could correct the oscillator’s frequency change based on the vibration experienced. This would reduce the phase noise of the oscillator compared to an oscillator vibrated without any compensation. Using this compensation system would reduce the overall phase noise of any communication system currently in use that utilizes crystal oscillators.
منابع مشابه
A Phase Noise Reduction Technique in LC Cross-coupled Oscillators with Adjusting Transistors Operating Regions
In this paper, an intuitive analysis of a phase noise reduction technique is done, and then a modified structure is proposed to achieve higher phase noise reduction than the original one. This method reduces the impact of noise sources on the phase noise by decreasing closed-loop gain in zero-crossings points and moving this high closed-loop gain to the non-zero-crossings points. This reduction...
متن کاملNovel Gyroscopic Mounting for Crystal Oscillators to Increase Short and Medium Term Stability under Highly Dynamic Conditions
In this paper, a gyroscopic mounting method for crystal oscillators to reduce the impact of dynamic loads on their output stability has been proposed. In order to prove the efficiency of this mounting approach, each dynamic load-induced instability has been analyzed in detail. A statistical study has been performed on the elevation angle of the g-sensitivity vector of Stress Compensated-cut (SC...
متن کاملThe Transient Behavior of LC and Ring Oscillators under External Frequency Injection
In this work, time domain analysis is used to solve Adler’s equation in order to obtain the required time, for an oscillator under external injection, reaching the steady-state condition. Mathematical approach has been applied to fully describe the transient of frequency acquisition in injection-locked LC and Ring oscillators considering their time-varying nature. Then, the analysis is verifie...
متن کاملVibration-induced PM Noise in Oscillators and its Suppression
High-precision oscillators have significant applications in modern communication and navigation systems, radars, and sensors mounted in unmanned aerial vehicles, helicopters, missiles, and other dynamic platforms. These systems must provide their required performance even when subject to mild to severe dynamic environmental conditions. Oscillators often can provide sufficiently low intrinsic ph...
متن کاملAnalysis and Design of Quadrature LC Oscillators
Single LC oscillators are known for their good phase noise performance. In this paper we analyse the effect of cross-coupling two LC oscillators in order to provide quadrature outputs, which are mandatory in modern transceiver architectures. We present a theoretical study that shows that due to coupling a frequency shift exists and the oscillator quality factor is reduced, leading to a poorer p...
متن کامل