Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA.

نویسندگان

  • Jacky Y T Yeung
  • Kevin J Canning
  • Guoyun Zhu
  • Peter Pennefather
  • John F MacDonald
  • Beverley A Orser
چکیده

In the hippocampus, two distinct forms of GABAergic inhibition have been identified, phasic inhibitory postsynaptic currents that are the consequence of the vesicular release of GABA and a tonic conductance that is activated by low ambient concentrations of extracellular GABA. It is not known what accounts for the distinct properties of receptors that mediate the phasic and tonic inhibitory conductances. Moreover, the physiological role of the tonic inhibitory conductance remains uncertain because pharmacological tools that clearly distinguish tonic and phasic receptors are lacking. Here, we demonstrate that GABAA receptors that generate a tonic conductance in cultured hippocampal neurons from embryonic mice have different pharmacological properties than those in cerebellar granule neurons or pyramidal neurons in the dentate gyrus. The tonic conductance in cultured hippocampal neurons is enhanced by the benzodiazepine, midazolam, and is insensitive to the inhibitory effects of the competitive antagonist, gabazine (< or =10 microM). We also identify penicillin as an uncompetitive antagonist that selectively inhibits the synaptic but not tonic conductance. GABA was applied to hippocampal neurons to investigate the properties of synaptic and extrasynaptic receptors. GABA-evoked current was composed of two components: a rapidly desensitizing current that was blocked by penicillin and a nondesensitizing current that was insensitive to penicillin blockade. The potency of GABA was greater for the penicillin-insensitive nondesensitizing current. Single-channel studies show that the gabazine-insensitive GABAA receptors have a lower unitary conductance (12 pS) than that estimated for synaptic receptors. Thus, specialized GABAA receptors with an apparent higher affinity for GABA that do not readily desensitize mediate the persistent tonic conductance in hippocampal neurons. The receptors underlying tonic and phasic inhibitory conductances in hippocampal neurons are pharmacologically and biophysically distinct, suggesting that they serve different physiological roles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACCELERATED COMMUNICATION Tonically Activated GABAA Receptors in Hippocampal Neurons Are High-Affinity, Low-Conductance Sensors for Extracellular GABA

In the hippocampus, two distinct forms of GABAergic inhibition have been identified, phasic inhibitory postsynaptic currents that are the consequence of the vesicular release of GABA and a tonic conductance that is activated by low ambient concentrations of extracellular GABA. It is not known what accounts for the distinct properties of receptors that mediate the phasic and tonic inhibitory con...

متن کامل

Tonically active GABAA receptors in hippocampal pyramidal neurons exhibit constitutive GABA-independent gating.

Phasic and tonic inhibitory currents of hippocampal pyramidal neurons exhibit distinct pharmacological properties. Picrotoxin and bicuculline methiodide inhibited both components, consistent with a role for GABAA receptors; however, gabazine, at a concentration that abolished miniature GABAergic inhibitory postsynaptic currents and responses to exogenous GABA, had no effect on tonic currents. B...

متن کامل

Gabapentin increases a tonic inhibitory conductance in hippocampal pyramidal neurons.

BACKGROUND The mechanisms underlying the therapeutic actions of gabapentin remain poorly understood. The chemical structure and behavioral properties of gabapentin strongly suggest actions on inhibitory neurotransmission mediated by gamma-aminobutyric acid (GABA); however, gabapentin does not directly modulate GABAA or GABAB receptors. Two distinct forms of GABAergic inhibition occur in the bra...

متن کامل

Carrier-mediated GABA release activates GABA receptors on hippocampal neurons.

gamma-Aminobutyric acid (GABA) transporters are electrogenic and sodium-dependent and can operate in reverse when cells are depolarized or when there is reversal of the inward sodium gradient. However, the functional relevance of this phenomenon is unclear. We have examined whether depolarization induced by a physiologically relevant increase in extracellular [K+] leads to sufficient amounts of...

متن کامل

Outwardly rectifying tonically active GABAA receptors in pyramidal cells modulate neuronal offset, not gain.

Hippocampal pyramidal cell excitability is regulated both by fast synaptic inhibition and by tonically active high-affinity extrasynaptic GABA(A) receptors. The impact of tonic inhibition on neuronal gain and offset, and thus on information processing, is unclear. Offset is altered by shunting inhibition, and the gain of a neuronal response to an excitatory input can be modified by changing the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 63 1  شماره 

صفحات  -

تاریخ انتشار 2003