Arc Suppression Coatings for Electrodynamic Tethers and Spacecraft Cabling
نویسندگان
چکیده
Advanced insulation materials are needed to support future electrodynamic tether missions as well as for other high voltage applications requiring direct exposure to vacuum/space plasma conditions, such as cabling to solar arrays. Some of the desired characteristics of these materials include the ability to resist damage from low-Earth-orbit environments (including atomic oxygen and micrometeoroids); insulating materials with high dielectric strengths and flexible enough to prevent damage; and conductors and coatings that have low electrical resistance. A particularly important concern is the need for electrical discharge/arc prevention and suppression if the electrical insulation is breached. In the case of discharges in a vacuum, the insulation material often becomes the gas source to feed the discharge. We have performed some preliminary work to identify, develop, and test these advanced coatings. The approach we are proposing for suppressing the discharge is including in the coating an encapsulated or entrapped electronegative gas, liquid, or solid that are released upon impact or at the onset of a discharge suppressing the growth and continuation of the discharge. This paper discusses the mechanisms for arc creation, preliminary tests we have preformed to suppress arc creation, and a path forward for development of such coatings.
منابع مشابه
Electrodynamic Tethers as Propulsion Systems: System Considerations and Future Plans
Electrodynamic space tethers offer the opportunity for in-space “propellantless” propulsion around planets with a magnetic field and an ionosphere. This propulsion is accomplished by converting the magnetic force on the tether current into propulsive or drag thrust to either increase or decrease the orbital energy of the spacecraft system. To validate electrodynamic-tether thrusting, we must be...
متن کاملModel of Current Collection to Small Breaches in Electrodynamic-Tether Insulation
Future electrodynamic-tether missions are expected to be long duration (from several months to years); hence, these missions can expect possibly significant performance degradation due to breaches in tether insulating material caused by hazards such as mi-crometeoroids. In order to accurately predict this performance degradation, the collection of plasma current to these small breaches must be ...
متن کاملShort Tethers for Eiectrodynaraic Thrust
Abstract. The operational advantages of electrodynamic tethers of moderate length are becoming evident from studies of collision avoidance. Although long tethers (of order of 10 kilometers) provide high efficiency and good adaptability to varying plasma conditions, boosting tethers of moderate length (~ 1 kilometer) and suitable design might still operate at acceptable efficiencies and adequate...
متن کاملActive Vibration Suppression of a Nonlinear Flexible Spacecraft
In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An o...
متن کاملDevelopment of spacecraft black thermal control coatings using the synthesized mesoporous Co3O4 pigment
The thermo-optical properties of coated surface are important for spacecraft thermal control coatings which depend on the optical properties and structure of the coating material. These coatings control the temperature by their capability of outer energy absorption and its emission. The optical properties of pigment can be improved if the pigment contains a high fraction of voids in its structu...
متن کامل