Comparison of MEMS switches and PIN diodes for switched dual tuned RF coils.

نویسندگان

  • Adam Maunder
  • Madhwesha Rao
  • Fraser Robb
  • Jim M Wild
چکیده

PURPOSE To evaluate the performance of micro-electromechanical systems (MEMS) switches against PIN diodes for switching a dual-tuned RF coil between 19 F and 1 H resonant frequencies for multi-nuclear lung imaging. METHODS A four-element fixed-phase and amplitude transmit-receive RF coil was constructed to provide homogeneous excitation across the lungs, and to serve as a test system for various switching methods. The MR imaging and RF performance of the coil when switched between the 19 F and 1 H frequencies using MEMS switches, PIN diodes and hardwired configurations were compared. RESULTS The performance of the coil with MEMS or PIN diode switching was comparable in terms of RF measurements, transmit efficiency and image SNR on both 19 F and 1 H nuclei. When the coil was not switched to the resonance frequency of the respective nucleus being imaged, reductions in the transmit efficiency were observed of 32% at the 19 F frequency and 12% at the 1 H frequency. The coil provides transmit field homogeneity of ±12.9% at the 1 H frequency and ±14.4% at the 19 F frequency in phantoms representing the thorax with the air space of the lungs filled with perfluoropropane gas. CONCLUSION MEMS and PIN diodes were found to provide comparable performance in on-state configuration, while MEMS were more robust in off-state high-powered operation (>1 kW), providing higher isolation and requiring a lower DC switching voltage than is needed for reverse biasing of PIN diodes. In addition, clear benefits of switching between the 19 F and 1 H resonances were demonstrated, despite the proximity of their Larmor frequencies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-Electromechanical Systems (MEMS) based RF-switches in MRI – a performance study

Modern Magnetic Resonance Imaging (MRI) systems permit parallel, spatial-encoded MRI (pMRI) and as such it is now possible to have up to 128 adjacent coil elements in a coil array [1]. Together with reduced imaging times, pMRI can significantly help to enhance the signal to noise ratio (SNR) over extended fields of view (FOV) [2]. However, a large number of channels subsequently create new tech...

متن کامل

Development of New Dual Tuned Coil and Array for Multi Nuclear Imaging

Introduction: MR imaging of nuclei other than hydrogen has been used to investigate metabolism in humans and animals. However, MRI observable nuclei other than hydrogen are not as abundant and as a result the image SNR is low. Therefore, dual-tuned radio frequency (RF) coils are required for these studies, in which high-resolution structural images are acquired using hydrogen and metabolic info...

متن کامل

Frequency and Beam Reconfigurable Antennas for MMMB Communication Systems

In this paper, four reconfigurable antennas are presented for multi-mode multi-band (MMMB) communication systems. Each antenna is able to reconfigure diverse operational frequency bands or beam directions depending on the states of embedded switches, which are implemented using pin diodes or RF-microelectro-mechanical system (RF-MEMS) switches.

متن کامل

Design and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation

According to contact type, RF MEMS switches are generally classified into two categories: Capacitive switches and Metal-to-Metal ones. The capacitive switches are capable to tolerate a higher frequency range and more power than M-to-M switches. This paper presents a cantilever shunt capacitive RF MEMS switch with characteristics such as low trigger voltage, high capacitive ratio, short switchin...

متن کامل

Design of a V-band Phase Shifter Using SP4T RF-MEMS Switches with Sonnet

This paper presents the design of a V-band switched-line phase shifter using SP4T RF-MEMS switches. Sonnet simulations are used to achieve accurate circuit models of both the RF-MEMS switches as well as CPW bends within the phase shifter. The V-band phase shifter utilizes two SP4T RF-MEMS switches to perform the delay line switching. The RF performance of the SP4T MEMS switch is optimized to ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره   شماره 

صفحات  -

تاریخ انتشار 2018