Conditional Simulation of Truncated Random Fields Using Gradient Methods
نویسنده
چکیده
The problem of estimating the location of facies boundaries is difficult in history matching, partly because of the geological complexity. The truncated plurigaussian method for modeling geologic facies is useful in this aspect not only for the wide variety of textures and shapes that can be generated, but also because of the internal consistency of the stochastic model. This method has not been widely applied in simulating distributions of reservoir properties facies, however. The main reason seems to be that it is fairly difficult to estimate the parameters of the stochastic model required to generate geological facies maps with the desired structures.
منابع مشابه
Bayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution
Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...
متن کاملConditional Random Fields for Automatic Punctuation
We model the relationship between sentences and their punctuation labels using conditional random fields. Some feature functions are hand-designed and others are generated by templates. We train the same model by stochastic gradient ascent, Collins Perceptron and contrastive divergence respectively and compare their performance. On the provided dataset, we achieve word-level accuracy of 94.56%....
متن کاملPunctuation Prediction using Linear Chain Conditional Random Fields
We investigate the task of punctuation prediction in English sentences without prosodic information. In our approach, stochastic gradient ascent (SGA) is used to maximize log conditional likelihood when learning the parameters of linear-chain conditional random fields. For SGA, two different approximation techniques, namely Collins perceptron and contrastive divergence, are used to estimate the...
متن کاملHyphenation with Conditional Random Field
In this project, we approach the problem of English-word hyphenation using a linear-chain conditional random field model. We measure the effectiveness of different feature combinations and two different learning methods: Collins perceptron and stochastic gradient following. We achieve the accuracy rate of 77.95% using stochastic gradient descent.
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کامل