Engineering of Hydrolysis Reaction Specificity in the Transglycosylase Cyclodextrin Glycosyltransferase

نویسنده

  • HANS LEEMHUIS
چکیده

Cyclodextrin glycosyltransferase (CGTase) is a member of the a-amylase family, a large group of enzymes that act on a-glycosidic bonds in starch and related compounds. Over twenty different reaction and product specificities have been found in this family. Although three-dimensional structure elucidation and the biochemical characterization of site-directed mutants have yielded a detailed insight into the mechanism of bond cleavage, the variation in reaction and product specificity is far from understood. This article gives an overview of recent developments in the understanding and engineering of transglycosylation and hydrolysis specificity in CGTase, which is one of the best-studied a-amylase family enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1.

The product specificity and pH optimum of the thermostable cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacterium thermosulfurigenes EM1 was engineered using a combination of x-ray crystallography and site-directed mutagenesis. Previously, a crystal soaking experiment with the Bacillus circulans strain 251 beta-CGTase had revealed a maltononaose inhibitor bound to the enzyme in an...

متن کامل

Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity.

Cyclodextrin glycosyltransferase (CGTase) enzymes from various bacteria catalyze the formation of cyclodextrins from starch. The Bacillus stearothermophilus maltogenic alpha-amylase (G2-amylase is structurally very similar to CGTases, but converts starch into maltose. Comparison of the three-dimensional structures revealed two large differences in the substrate binding clefts. (i) The loop form...

متن کامل

Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyltransferase.

Cyclodextrin-glycosyltransferases (CGTases) (EC ) preferably catalyze transglycosylation reactions with glucosyl residues as acceptor, whereas the homologous alpha-amylases catalyze hydrolysis reactions using water as acceptor. This difference in reaction specificity is most likely caused by the acceptor binding site. To investigate this in detail we altered the acceptor site residues Lys-232, ...

متن کامل

Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity.

The enzymes from the alpha-amylase family all share a similar alpha-retaining catalytic mechanism but can have different reaction and product specificities. One family member, cyclodextrin glycosyltransferase (CGTase), has an uncommonly high transglycosylation activity and is able to form cyclodextrins. We have determined the 2.0 and 2.5 A X-ray structures of E257A/D229A CGTase in complex with ...

متن کامل

The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity.

Cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) is used for the industrial production of cyclodextrins. Its application, however, is hampered by the limited cyclodextrin product specificity and the strong inhibitory effect of cyclodextrins on CGTase activity. Recent structural studies have identified Arg47 in the Bacillus circulans strain 251 CGTase as an active-site residue interacting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003