Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans.

نویسندگان

  • Mandy Kosel
  • Waltraud Wild
  • Alexandra Bell
  • Michael Rothe
  • Carsten Lindschau
  • Christian E W Steinberg
  • Wolf-Hagen Schunck
  • Ralph Menzel
چکیده

Caenorhabditis elegans harbours several CYP (cytochrome P450) genes that are homologous with mammalian CYP isoforms important to the production of physiologically active AA (arachidonic acid) metabolites. We tested the hypothesis that mammals and C. elegans may share similar basic mechanisms of CYP-dependent eicosanoid formation and action. We focused on CYP33E2, an isoform related to the human AA-epoxygenases CYP2C8 and CYP2J2. Co-expression of CYP33E2 with the human NADPH-CYP reductase in insect cells resulted in the reconstitution of an active microsomal mono-oxygenase system that metabolized EPA (eicosapentaenoic acid) and, with lower activity, also AA to specific sets of regioisomeric epoxy- and hydroxy-derivatives. The main products included 17,18-epoxyeicosatetraenoic acid from EPA and 19-hydroxyeicosatetraenoic acid from AA. Using nematode worms carrying a pCYP33E2::GFP reporter construct, we found that CYP33E2 is exclusively expressed in the pharynx, where it is predominantly localized in the marginal cells. RNAi (RNA interference)-mediated CYP33E2 expression silencing as well as treatments with inhibitors of mammalian AA-metabolizing CYP enzymes, significantly reduced the pharyngeal pumping frequency of adult C. elegans. These results demonstrate that EPA and AA are efficient CYP33E2 substrates and suggest that CYP-eicosanoids, influencing in mammals the contractility of cardiomyocytes and vascular smooth muscle cells, may function in C. elegans as regulators of the pharyngeal pumping activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans.

The DAF-9 cytochrome P450 is a key regulator of dauer formation, developmental timing and longevity in the nematode Caenorhabditis elegans. Here we describe the first identified chemical inhibitor of DAF-9 and the first reported small-molecule tool that robustly induces dauer formation in typical culture conditions. This molecule (called dafadine) also inhibits the mammalian ortholog of DAF-9(C...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Expression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells

Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...

متن کامل

Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism.

Cytochrome P450 (P450)-mediated metabolism of arachidonic acid regulates inflammation in hepatic and extrahepatic tissue. CYP2C/CYP2J-derived epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EET+DHET) elicit anti-inflammatory effects, whereas CYP4A/CYP4F-derived 20-hydroxyeicosatetraenoic acid (20-HETE) is proinflammatory. Because the impact of inflammation on P450-mediated formation of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 435 3  شماره 

صفحات  -

تاریخ انتشار 2011