Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability.
نویسندگان
چکیده
PURPOSE Idiopathic epilepsy is caused by the complex interaction of genetic and environmental factors. The purpose of this study was to use computational approaches to explore the interaction between changes in sodium channel availability caused by mutations and mossy fiber sprouting. METHODS We used a previously published biophysically realistic computer model of dentate gyrus neurons and networks. A sensitivity analysis probed the effects of typical mutation-like changes in either single- or multiple-gating parameters. Isolated neuron models were stimulated with current injections, and networks were stimulated with perforant path synaptic input. The gene-environment interaction was studied by including mossy fiber sprouting into these networks. RESULTS Single neuron responses to current injections were complex, with increased sodium channel availability paradoxically reducing firing rates. In the absence of mossy fiber sprouting, control networks showed strong accommodation supporting the role of the dentate gyrus as a gate. Availability changes alone were not able to drive the networks into ictal states, even though they reduced the effectiveness of the dentate gyrus gate. Interestingly, the presence of electrophysiologic changes substantially increased the ability of mossy fiber sprouting to induce ictal activity. CONCLUSION (1) Increased sodium channel availability does not necessarily lead to increased firing rates, (2) network excitability is most sensitive to changes in steady state activation of sodium channels, (3) mutation-induced changes in availability reduce the effectiveness of the dentate gyrus gate, and (4) mutations interact strongly with structural network changes to allow ictal-like activity in the dentate gyrus.
منابع مشابه
Combined Role of Seizure-Induced Dendritic Morphology Alterations and Spine Loss in Newborn Granule Cells with Mossy Fiber Sprouting on the Hyperexcitability of a Computer Model of the Dentate Gyrus
Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, m...
متن کاملPrediction by modeling that epilepsy may be caused by very small functional changes in ion channels.
OBJECTIVE To use computer simulation to perform a "genetic sensitivity" analysis to predict which genes are best positioned to increase risk as well as to predict functionally how variants in these genes might increase network excitability. METHODS A previously published, biophysically realistic model of the dentate gyrus that included mossy fiber sprouting between granule cells was used to m...
متن کاملReplacement of Asymmetric Synaptic Profiles in the Molecular Layer of Dentate Gyrus Following Cycloheximide in the Pilocarpine Model in Rats
Mossy fiber sprouting is among the best-studied forms of post-lesional synaptic plasticity and is regarded by many as contributory to seizures in both humans and animal models of epilepsy. It is not known whether mossy fiber sprouting increases the number of synapses in the molecular layer or merely replaces lost contacts. Using the pilocarpine (Pilo) model of status epilepticus to induce mossy...
متن کاملRole of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography.
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to...
متن کاملElectrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting.
Mossy fiber sprouting is a form of synaptic reorganization in the dentate gyrus that occurs in human temporal lobe epilepsy and animal models of epilepsy. The axons of dentate gyrus granule cells, called mossy fibers, develop collaterals that grow into an abnormal location, the inner third of the dentate gyrus molecular layer. Electron microscopy has shown that sprouted fibers from synapses on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Epilepsia
دوره 51 1 شماره
صفحات -
تاریخ انتشار 2010