Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China
نویسندگان
چکیده
Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250-2000 μm), rather than within the microaggregates (53-250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.
منابع مشابه
Dissolved Organic Carbon in Headwater Streams and Riparian Soil Organic Carbon along an Altitudinal Gradient in the Wuyi Mountains, China
Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC ...
متن کاملTemperature Sensitivity of Soil Organic Carbon Mineralization along an Elevation Gradient in the Wuyi Mountains, China
Soil organic carbon (SOC) actively participates in the global carbon (C) cycle. Despite much research, however, our understanding of the temperature sensitivity of soil organic carbon (SOC) mineralization is still very limited. To investigate the responses of SOC mineralization to temperature, we sampled surface soils (0-10 cm) from evergreen broad-leaf forest (EBF), coniferous forest (CF), sub...
متن کاملTemperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China
No consensus exists regarding soil organic carbon (SOC) lability and the temperature sensitivity of its decomposition. This lack of clear understanding limits the accuracy in predicting the long-term impacts of climate change on soil carbon (C) storage. In this study, we determined the temperature responses of labile and recalcitrant organic carbon (LOC vs. ROC) by comparing the time required t...
متن کاملDistinct soil bacterial communities along a small-scale elevational gradient in alpine tundra
The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000-2500 m elevations on Changbai Mountain in China...
متن کاملSoil Organic Carbon Stocks and Nitrogen Content Comparison in Different Slope Positions in Native Grasslands and Adjacent Cultivated Soils (Case Study: Kermanshah Mountain Rangelands, Iran)
Global warming has been largely driven by increasing atmospheric GHG (Green House Gasses), particularly carbon dioxide caused by fossil fuels burning. The current trend can not be stopped except by reducing fossil fuel consumption or storing organic carbon in soil or earthchr('39')s biological systems such as forests, rangelands and agricultural systems. This study was conducted to determine th...
متن کامل