Microlocal Analysis of generalized pullbacks of Colombeau functions

نویسنده

  • Simon Haller
چکیده

In distribution theory the pullback of a general distribution by a C∞function is well-defined whenever the normal bundle of the C∞-function does not intersect the wavefront set of the distribution. However, the Colombeau theory of generalized functions allows for a pullback by an arbitrary c-bounded generalized function. It has been shown in previous work that in the case of multiplication of Colombeau functions (which is a special case of a C∞ pullback), the generalized wave front set of the product satisfies the same inclusion relation as in the distributional case, if the factors have their wavefront sets in favorable position. We prove a microlocal inclusion relation for the generalized pullback (by a c-bounded generalized map) of Colombeau functions. The proof of this result relies on a stationary phase theorem for generalized phase functions, which is given in the Appendix. Furthermore we study an example (due to Hurd and Sattinger), where the pullback function stems from the generalized characteristic flow of a partial differential equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic regularity and solvability for PDEs with Colombeau coefficients

The paper addresses questions of existence and regularity of solutions to linear partial differential equations whose coefficients are generalized functions or generalized constants in the sense of Colombeau. We introduce various new notions of ellipticity and hypoellipticity, study their interrelation, and give a number of new examples and counterexamples. Using the concept of G∞-regularity of...

متن کامل

Elliptic regularity and solvability for partial differential equations with Colombeau coefficients

The paper addresses questions of existence and regularity of solutions to linear partial differential equations whose coefficients are generalized functions or generalized constants in the sense of Colombeau. We introduce various new notions of ellipticity and hypoellipticity, study their interrelation, and give a number of new examples and counterexamples. Using the concept of G∞-regularity of...

متن کامل

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

Microlocal properties of basic operations in Colombeau algebras

The Colombeau algebra of generalized functions allows to unrestrictedly carry out products of distributions. We analyze this operation from a microlocal point of view, deriving a general inclusion relation for wave front sets of products in the algebra. Furthermore, we give explicit examples showing that the given result is optimal, i.e. its assumptions cannot be weakened. Finally, we discuss t...

متن کامل

Geophysical modelling with Colombeau functions: Microlocal properties and Zygmund regularity

In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007