Mean Value Representations and Curvatures of Compact Convex Hypersurfaces

نویسنده

  • S. L. LEE
چکیده

It is shown that the kernels for mean value representations of points in R in terms of the integrals over piecewise smooth hypersurfaces are divergence free vector fields defined by homogeneous functions of degree −(n+1), whose restrictions to the unit sphere are positive and orthogonal to the first harmonics. By Minkowski problem, such a function is the reciprocal of the composition of the Gaussian curvature of a compact strictly convex hypersurface with its inverse Gauss map. For a compact strictly convex hypersurface, M, we define a dual surface M∗ via its support function. It is shown that the homogeneous extension of degree −(n+1) of the reciprocal of the composition of the curvature of M with its inverse Gauss map, as a function on the unit normal sphere, is equal to a homogeneous function defined by the curvature of M∗.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity estimates for hypersurfaces moving by convex curvature functions

We consider the evolution of compact hypersurfaces by fully non-linear, parabolic curvature ows for which the normal speed is given by a smooth, convex, degree one homogeneous function of the principal curvatures. We prove that solution hypersurfaces on which the speed is initially positive become weakly convex at a singularity of the ow. The result extends the convexity estimate [HS99b] of Hui...

متن کامل

$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures

Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...

متن کامل

Convex Hypersurfaces with Pinched Principal Curvatures and Flow of Convex Hypersurfaces by High Powers of Curvature

We consider convex hypersurfaces for which the ratio of principal curvatures at each point is bounded by a function of the maximum principal curvature with limit 1 at infinity. We prove that the ratio of circumradius to inradius is bounded by a function of the circumradius with limit 1 at zero. We apply this result to the motion of hypersurfaces by arbitrary speeds which are smooth homogeneous ...

متن کامل

EXAMPLES OF H - HYPERSURFACES IN H n × R AND GEOMETRIC APPLICATIONS

In this paper we describe all rotation H-hypersurfaces in Hn × R and use them as barriers to prove existence and characterization of certain vertical H-graphs and to give symmetry and uniqueness results for compact H-hypersurfaces whose boundary is one or two parallel submanifolds in slices. We also describe examples of translation H-hypersurfaces in Hn × R. For n > 2 we obtain a complete embed...

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007