Transition metal ions significantly decrease phospholipase C activity degrading phosphatidylinositol-4,5-bisphosphate in the brain cortex.
نویسندگان
چکیده
Highly reactive transition metals, such as copper and iron play an obligatory role in generating of reactive oxygen species (ROS). Many neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD) show increased accumulation of these metals. Phosphoinositide metabolism is altered in neurodegenerative diseases. In the present study, we examined the effect of CuSO(4) and FeCl(2) on phospholipase C (PLC) activity degrading phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidylinositol (PI) in synaptic plasma membranes (SPM) from the rat brain cortex. We report that 25 microM CuSO(4) and FeCl(2) decreased PIP(2)-PLC activity by 60% and 75%, respectively. However, both compounds had no effect on PI-PLC activity. These data indicated that exclusively PIP(2)-PLC is sensitive to transition metal ions. We suggest that chelators of these metals may protect brain against alteration of phosphoinositide metabolism and might be beneficial in the treatment of neurodegenerative diseases.
منابع مشابه
Molecular cloning and characterization of a novel phospholipase C, PLC-eta.
PLC (phospholipase C) plays an important role in intracellular signal transduction by hydrolysing phosphatidylinositol 4,5-bisphosphate, a membrane phospholipid. To date, 12 members of the mammalian PLC isoforms have been identified and classified into five isotypes beta, gamma, delta, epsilon and zeta, which are regulated by distinct mechanisms. In the present study, we describe the identifica...
متن کاملPhosphatidylinositol 4,5-bisphosphate phosphodiesterase in higher plants.
A phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate to release inositol trisphosphate was detected in a sedimentable fraction from celery and from some other higher plants. The particulate enzyme also hydrolyses phosphatidylinositol, whereas the soluble phosphatidylinositol phosphodiesterase described previously [Irvine, Letcher & Dawson (1980) Biochem. J. 192, 279-283] act...
متن کاملEffects of treatment with haloperidol, chlorpromazine, and clozapine on protein kinase C (PKC) and phosphoinositide-specific phospholipase C (PI-PLC) activity and on mRNA and protein expression of PKC and PLC isozymes in rat brain.
The effects of acute (single) and chronic (21-day) administration of haloperidol (HAL), chlorpromazine (CPZ), or clozapine (CLOZ) on components of the phosphoinositide (PI)-signaling pathway were studied in rat brain. Chronic administration of HAL decreased protein kinase C (PKC) activity and mRNA and protein levels of PKC alpha and epsilon isozymes in both membrane and cytosol fractions of cor...
متن کاملActivation of plant phospholipase Dbeta by phosphatidylinositol 4,5-bisphosphate: characterization of binding site and mode of action.
Hydrolysis of phospholipids by plant phospholipase Dbeta (PLDbeta) requires phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here we show that PLDbeta is stimulated by different polyphosphoinositides, among which PI(4,5)P2 is most effective. On the basis of amino acid sequence analysis, PI(4,5)P2 binding assay, and protein engineering studies, we have identified in the catalytic region of PLD...
متن کاملBrain ischemia decreases phosphatidylcholine-phospholipase D but not phosphatidylinositol-phospholipase C in rats.
BACKGROUND AND PURPOSE Phosphatidylcholine (PC)-phospholipase D (PLD) is an important intracellular signaling pathway in response to a variety of agonists, but little is known about the effects of brain ischemia on the PC-PLD system. We thus have examined the effects of global cerebral ischemia on PLD in rats. METHODS We have examined the effects of global ischemia (decapitation or four-vesse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Polish journal of pharmacology
دوره 55 5 شماره
صفحات -
تاریخ انتشار 2003