Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly

نویسندگان

  • Erik Winfree
  • Renat Bekbolatov
چکیده

For robust molecular implementation of tile-based algorithmic self-assembly, methods for reducing errors must be developed. Previous studies suggested that by control of physical conditions, such as temperature and the concentration of tiles, errors (ε) can be reduced to an arbitrarily low rate – but at the cost of reduced speed (r) for the self-assembly process. For tile sets directly implementing blocked cellular automata, it was shown that r ≈ βε was optimal. Here, we show that an improved construction, which we refer to as proofreading tile sets, can in principle exploit the cooperativity of tile assembly reactions to dramatically improve the scaling behavior to r ≈ βε and better. This suggests that existing DNA-based molecular tile approaches may be improved to produce macroscopic algorithmic crystals with few errors. Generalizations and limitations of the proofreading tile set construction are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of Compact Proofreading for Self-assembled Patterns

Fault-tolerance is a critical issue for biochemical computation. Recent theoretical work on algorithmic self-assembly has shown that error correcting tile sets are possible, and that they can achieve exponential decrease in error rates with a small increase in the number of tile types and the scale of the construction [24, 4]. Following [17], we consider the issue of applying similar schemes to...

متن کامل

Error Correction for DNA Self-Assembly: Preventing Facet Nucleation

Abstract. Algorithmic self-assembly has been proposed as a mechanism for bottom-up construction of nanostructures and autonomous DNA computation. For these applications, we are often interested in assembling large systems with great precision. However, several effects present in real systems result in errors with respect the the abstract Tile Assembly Model used for most theoretical studies. He...

متن کامل

Error-Resilient Tile Sets for DNA Self-Assembly

Experiments have demonstrated that DNA molecules can compute like a machine to solve mathematical problems, which is significant because of their parallel computation ability. However, due to the nature of biochemical reactions, DNA computation suffers from errors, which are its main limitation. The abstract and kinetic Tile Assembly Models are now commonly used to simulate real DNA computing e...

متن کامل

Reducing facet nucleation during algorithmic self-assembly.

Algorithmic self-assembly, a generalization of crystal growth, has been proposed as a mechanism for bottom-up fabrication of complex nanostructures and autonomous DNA computation. In principle, growth can be programmed by designing a set of molecular tiles with binding interactions that enforce assembly rules. In practice, however, errors during assembly cause undesired products, drastically re...

متن کامل

Capabilities and Limits of Compact Error Resilience Methods for Algorithmic Self-assembly in Two and Three Dimensions

Winfree’s pioneering work led the foundations in the area of errorreduction in algorithmic self-assembly[26], but the construction resulted in increase of the size of assembly. Reif et. al. contributed further in this area with compact error-resilient schemes [15] that maintained the original size of the assemblies, but required certain restrictions on the Boolean functions to be used in the al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003