Merging Information Versus Speech Recognition
نویسندگان
چکیده
Norris, McQueen & Cutler claim that all known speech recognition data can be accounted for with their autonomous model, “Merge.” But this claim is doubly misleading. (1) Although speech recognition is autonomous in their view, the Merge model is not. (2) The body of data which the Merge model accounts for, is not, in their view, speech recognition
منابع مشابه
An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملGroup of Weights with Information Flow Output Neuron Group Hidden (state) Neuron Group
While many possible network architectures have been used to estimate conditional probabilities of class membership, recurrent neural networks (RNNs) have been most successful for speech recognition. In the past optimal results were achieved by merging the outputs of two RNNs trained in each time direction. Merging outputs of di erent experts to form one resulting opinion is theoretically di cul...
متن کاملCross-Word Arabic Pronunciation Variation Modeling Using Part of Speech Tagging
Speech recognition is often used as the front-end for many natural language processing (NLP) applications. Some of these applications include machine translation, information retrieval and extraction, voice dialing, call routing, speech synthesis/recognition, data entry, dictation, control, etc. Thus, much research work has been done to improve the speech recognition and the related NLP applica...
متن کاملMerging information in speech recognition: feedback is never necessary.
Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the ...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کامل