A counterexample to a conjecture of Laurent and Poljak

نویسندگان

  • Antoine Deza
  • Gabriel Indik
چکیده

The metric polytope metn is the polyhedron associated with all semimetrics on n nodes and defined by the triangle inequalities xij − xik − xjk ≤ 0 and xij + xik + xjk ≤ 2 for all triples i, j, k of {1, . . . , n}. In 1992 Monique Laurent and Svatopluk Poljak conjectured that every fractional vertex of the metric polytope is adjacent to some integral vertex. The conjecture holds for n ≤ 8 and, in particular, for the 1 550 825 600 vertices of met8. While the overwhelming majority of the known vertices of met9 satisfy the Laurent-Poljak conjecture, we exhibit a fractional vertex not adjacent to any integral vertex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

A counterexample to the dominating set conjecture

The metric polytope metn is the polyhedron associated with all semimetrics on n nodes and defined by the triangle inequalities xij − xik − xjk ≤ 0 and xij + xik + xjk ≤ 2 for all triples i, j, k of {1, . . . , n}. In 1992 Monique Laurent and Svatopluk Poljak conjectured that every fractional vertex of the metric polytope is adjacent to some integral vertex. The conjecture holds for n ≤ 8 and, i...

متن کامل

On the postulation of s^d fat points in P^d

In connection with his counterexample to the fourteenth problem of Hilbert, Nagata formulated a conjecture concerning the postulation of r fat points of the same multiplicity in P 2 and proved it when r is a square. Iarrobino formulated a similar conjecture in P d. We prove Iarrobino's conjecture when r is a d-th power. As a corollary, we obtain new counterexamples modeled on those by Nagata.

متن کامل

ON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS

Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...

متن کامل

A 64-Dimensional Counterexample to Borsuk's Conjecture

Bondarenko’s 65-dimensional counterexample to Borsuk’s conjecture contains a 64-dimensional counterexample. It is a two-distance set of 352 points.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005