Distinct Roles for Spontaneous and Visual Activity in Remodeling of the Retinogeniculate Synapse

نویسندگان

  • Bryan M. Hooks
  • Chinfei Chen
چکیده

Sensory experience and spontaneous activity play important roles in development of sensory circuits; however, their relative contributions are unclear. Here, we test the role of different forms of activity on remodeling of the mouse retinogeniculate synapse. We found that the bulk of maturation occurs without patterned sensory activity over 4 days spanning eye opening. During this early developmental period, blockade of spontaneous retinal activity by tetrodotoxin, but not visual deprivation, retarded synaptic strengthening and inhibited pruning of excess retinal afferents. Later in development, synaptic remodeling becomes sensitive to changes in visually evoked activity, but only if there has been previous visual experience. Synaptic strengthening and pruning were disrupted by visual deprivation following 1 week of vision, but not by chronic deprivation from birth. Thus, spontaneous activity is necessary to drive the bulk of synaptic refinement around the time of eye opening, while sensory experience is important for the subsequent maintenance of connections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in input strength and number are driven by distinct mechanisms at the retinogeniculate synapse.

Recent studies have demonstrated that vision influences the functional remodeling of the mouse retinogeniculate synapse, the connection between retinal ganglion cells and thalamic relay neurons in the dorsal lateral geniculate nucleus (LGN). Initially, each relay neuron receives a large number of weak retinal inputs. Over a 2- to 3-wk developmental window, the majority of these inputs are elimi...

متن کامل

Experience-Dependent Retinogeniculate Synapse Remodeling Is Abnormal in MeCP2-Deficient Mice

Mutations in MECP2 underlie the neurodevelopmental disorder Rett syndrome (RTT). One hallmark of RTT is relatively normal development followed by a later onset of symptoms. Growing evidence suggests an etiology of disrupted synaptic function, yet it is unclear how these abnormalities explain the clinical presentation of RTT. Here we investigate synapse maturation in Mecp2-deficient mice at a ci...

متن کامل

Contributions of Receptor Desensitization and Saturation to Plasticity at the Retinogeniculate Synapse

The retinogeniculate synapse conveys visual information from the retina to thalamic relay neurons. Here, we examine the mechanisms of short-term plasticity that can influence transmission at this connection in mouse brain slices. Our studies show that synaptic strength is modified by physiological activity patterns due to marked depression at high frequencies. Postsynaptic mechanisms of plastic...

متن کامل

Different roles for AMPA and NMDA receptors in transmission at the immature retinogeniculate synapse.

The relay of information at the retinogeniculate synapse, the connection between retina and visual thalamus, begins days before eye opening and is thought to play an important role in the maturation of neural circuits in the thalamus and visual cortex. Remarkably, during this period of development, the retinogeniculate synapse is immature, with single retinal ganglion cell inputs evoking an ave...

متن کامل

Metabotropic glutamate receptors and glutamate transporters shape transmission at the developing retinogeniculate synapse.

Over the first few postnatal weeks, extensive remodeling occurs at the developing murine retinogeniculate synapse, the connection between retinal ganglion cells (RGCs) and the visual thalamus. Although numerous studies have described the role of activity in the refinement of this connection, little is known about the mechanisms that regulate glutamate concentration at and around the synapse ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2006