Blocking the Entrance to Open the Gate

نویسندگان

  • Patrick Schrauwen
  • Silvie Timmers
  • Matthijs K.C. Hesselink
چکیده

A lmost 80% of postprandial glucose uptake resides in skeletal muscle (1). Hence, development of skeletal muscle insulin resistance is a hallmark of type 2 diabetes. Muscle is an ambiguous organ with respect to substrate selection. To fuel muscle contraction, both glucose and fatty acids can be oxidized. Glucose first needs to enter the muscle cells via insulin-mediated GLUT4-dependent transmembrane transport and then be converted to acetyl-CoA via the pyruvate dehydrogenase (PDH) complex. Oxidation of fatty acids, especially long-chain fatty acids, requires mitochondrial entrance via carnitine palmitoyltransferase-1 (CPT-1) prior to subsequent b-oxidation. To explain the well-known relationship between obesity and type 2 diabetes, Sir Philip Randle (2) proposed in 1963 that high uptake of fatty acids in skeletal muscle resulting from high free fatty acid levels observed in obesity would result in high fatty acid oxidation rates (Fig. 1). In turn, this would reduce glucose oxidation, thereby rendering the muscle insulin resistant. At the cellular level, high rates of fatty acid oxidation would result in accumulation of acetyl-CoA and citrate, thereby inhibiting PDH and glycolysis, ultimately resulting in reduced glucose oxidation. However, in the previous 2 decades, the concept of the Randle cycle in skeletal muscle has been challenged. Elegant studies by Shulman and colleagues (3–5) showed that in type 2 diabetes, reduced uptake of glucose due to compromised GLUT4 translocation, not a reduced glycolytic flux, is the main culprit in development of skeletal muscle insulin resistance. Moreover, fat accumulation in muscle, and particularly accumulation of muscle diacylglycerol (DAG), was suggested to impair GLUT4 translocation in type 2 diabetes (6). Hence, a reduced capacity to oxidize fat due to mitochondrial dysfunction (7,8) rather than high rates of fatty acid oxidation as proposed by Randle is hypothesized to underlie accumulation of triacylglycerol/ DAG in muscle, thus promoting insulin resistance. Although this DAG hypothesis has dominated research on the cause of myocellular insulin resistance for some 20 years, recent studies challenge the concept that mitochondrial dysfunction is the root cause of insulin resistance (rev. in 9). The article by Keung et al. (10) in this issue of Diabetes revisits the Randle hypothesis of a reciprocal relationship between fat and glucose oxidation. Inhibition of mitochondrial entry of fatty acids by oxfenicine resulted in improved glucose tolerance and insulin sensitivity in high-fat diet–fed mice, while body mass was maintained. Next, the authors confirmed that oxfenicine was indeed able to reduce fat oxidation with a concomitant increase in glucose oxidation facilitated by increased PDH activity. Interestingly, improvements in muscle glucose handling were not only observed in the basal state, but also in insulin-stimulated AKT-phosphorylation, an important marker of insulin sensitivity. Finally, GLUT4 translocation was improved. In a completely independent study, we (11) recently reported similar findings in mice and humans who were administered with etomoxir, a pharmaceutical compound that inhibits CPT-1 and that was in clinical trials for its antidiabetic effects in the late 1990s. We found that in humans, 36 h of etomoxir administration increased glucose oxidation and GLUT4 translocation. Longer-term etomoxir administration in mice improved glucose homeostasis and insulin signaling. Together, these findings are consistent with the current results of Keung et al. (10). Furthermore, it was previously shown that mice lacking malonyl-CoA decarboxylase have elevated malonyl-CoA levels, which promote the inhibitory effect of malonyl-CoA on CPT-1, thereby leading to reduced fat oxidation and improved glucose homeostasis (12). Similarly, Koves et al. (13) showed that an increase in fatty acid oxidation can lead to incomplete oxidation of fatty acids, thereby promoting insulin resistance. In follow-up studies, Muoio et al. (14) recently showed that carnitine acetyltransferase may function to relieve pressure on the PDH complex when fatty acid oxidation rates outpace tricarboxylic acid cycle activity, and that under conditions of carnitine acetyltransferase deficiency, high fat oxidation rates may impair glucose oxidation. Collectively, these studies suggest that the essentials of the Randle cycle can operate in skeletal muscle, and that reducing myocellular fat oxidative capacity to promote insulin sensitivity is a viable approach in the treatment of type 2 diabetes. What can we learn from these new studies? First, they show that our understanding of the mechanism(s) inducing muscle insulin resistance is not yet complete. Whereas the DAG hypothesis has attracted most attention the past few years, recent studies challenge the concept that mitochondrial dysfunction and concomitant elevated DAG lead to insulin resistance in muscle (11,15,16). Conversely, although the Randle cycle has been suggested to be of minor importance in skeletal muscle for over 3 decades, the novel results of these new studies indicate that substrate competition between glucose and fatty acids for oxidation may indeed be relevant in development of muscle insulin resistance. As is often the case, the truth may be in the middle, and both theories may prove to play a role in muscle insulin resistance. Secondly, results of Keung et al. may provide insight into new targets for diabetes treatment. It should be noted, however, that such From the Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; and the Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands. Corresponding author: Patrick Schrauwen, [email protected]. DOI: 10.2337/db12-1663 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by -nc-nd/3.0/ for details. See accompanying original article, p. 711.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Simulation of Radiation effects in protection layers of logical cell of the digital gate in ‎the FPGA for electron and proton rays Using the FLUKA Code

In this paper, radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays was simulated Using the FLUKA Code. by using of the Monte Carlo simulation, the electron and proton transport into the logical cell of the digital gate in the FPGA will be studied. In this simulation, the maximum energy of the electrons and protons at the entrance o...

متن کامل

Voltage-Controlled Gating at the Intracellular Entrance to a Hyperpolarization-Activated Cation Channel

Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Our previous work using the specific HCN channel blocker ZD7288 provided evidence for an intracellular activation gate for these channels because it appears that ZD7288, applied from the intracellular side, can enter and leave HCN channels only at voltages where the activation gate is op...

متن کامل

Evaluation of the Iranian State University EFL Entrance Examination Test (UEEET)

The motive behind this study was to evaluate the Iranian State University EFL Entrance Examination Test (UEEET) based on Bachman and Palmer’s (1996) ‘Usefulness Six-faceted Model ‘accommodating Relia- bility, Validity, Impact, Interactiveness, Authenticity, and Practicality. To do so, thirty professors and one-hundred EFL freshmen were selected randomly from five universities. A questionnaire c...

متن کامل

Comparison of Different Model Predictions on RBE in the Proton Therapy Technique Using the GATE Code

Recently, proton therapy is used as one of the effective methods for treating various types of cancer in clinical treatment. An appropriate formalism to obtain relative biological effectiveness values for treatment planning studies is needed in this hadrontherapy technique. Hereby, the quantity of biological dose, instead of using the physical doses, is introduced to evaluate the biological eff...

متن کامل

Voltage-dependent gating of the Cx32*43E1 hemichannel: Conformational changes at the channel entrances

Voltage is an important parameter that regulates the open probability of both intercellular channels (gap junctions) and undocked hemichannels formed by members of the connexin gene family. All connexin channels display two distinct voltage-gating processes, termed loop- or slow-gating and V(j)- or fast-gating, which are intrinsic hemichannel properties. Previous studies have established that t...

متن کامل

مطالعه جریان همزمان از زیر یک دریچه‌ کشویی و روی یک سرریز لبه تیز ذوزنقه‌ای

The combined system of gate and weir is used for flow measurement in open channels. But in case the passing water has floating material and sediment it damages their performance and hence error of measurement will increase. In order to solve this problem, weir and gate can be combined and a concentrated hydraulic system known as weir-gate can be developed, thus allowing sediments transportation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013