The Zebrafish fade out mutant: a novel genetic model for Hermansky-Pudlak syndrome.
نویسندگان
چکیده
PURPOSE To characterize retinal morphology and visual system function in the zebrafish mutant fade out (fad) and to establish the mutant as a lower vertebrate model for Hermansky-Pudlak syndrome (HPS). METHODS Retinal morphology of fad larvae was examined between 3 and 9 days postfertilization (dpf) by standard histology, transmission electron microscopy, and immunohistochemistry examination. Apoptotic cells were visualized by TdT-mediated dUTP nick-end labeling (TUNEL) staining. Visual system function was probed by electroretinography and behavioral assessment by optokinetic response measurements. Blood clotting was evaluated by time to occlusion testing of blood vessels as an arterial thrombosis assay. The chromosomal location of fad was determined by simple sequence-length polymorphism mapping. Genomic fragments of candidate genes were cloned by standard molecular techniques and mapped to the zebrafish genome by radiation hybrid mapping. RESULTS Mutant fad larvae are hypopigmented and show structural defects in the outer retina. Melanosomes of these larvae in the retinal pigment epithelium are hypopigmented, generally smaller, and progressively reduced in number compared to nonmutant larvae. Progressive microvilli protrusions into the photoreceptor cell layer are not detectable, and photoreceptor outer segments get shorter and are misaligned. Photoreceptors subsequently undergo apoptosis, with a peak of cell death at 6 dpf. Electrical responses of the retina and visual performance are severely reduced. Blood clotting is prolonged in mutant fad larvae. Genomic mapping of fad reveals distinct genomic positions of the mutant gene from known human HPS genes. CONCLUSIONS The fad mutant shows syndromic defects in pigmentation, outer retinal structure and function, and blood clotting. This syndrome is characteristic of Hermansky-Pudlak syndrome (HPS), making fad a novel genetic model of HPS. The gene does not cosegregate with the known human HPS genes, suggesting a novel molecular cause of HPS.
منابع مشابه
A Novel Splice Site Mutation in HPS1 Gene is Associated with Hermansky-Pudlak Syndrome-1 (HPS1) in an Iranian Family
متن کامل
snow white, a zebrafish model of Hermansky-Pudlak Syndrome type 5.
Hermansky-Pudlak Syndrome (HPS) is a set of genetically heterogeneous diseases caused by mutations in one of nine known HPS genes. HPS patients display oculocutaneous hypopigmentation and bleeding diathesis and, depending on the disease subtype, pulmonary fibrosis, congenital nystagmus, reduced visual acuity, and platelet aggregation deficiency. Mouse models for all known HPS subtypes have cont...
متن کاملThe zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles.
The trafficking of intracellular vesicles is essential for a number of cellular processes and defects in this process have been implicated in a wide range of human diseases. We identify the zebrafish mutant lbk as a novel model for such disorders. lbk displays hypopigmentation of skin melanocytes and the retinal pigment epithelium (RPE), an absence of iridophore reflections, defects in internal...
متن کاملThe Hermansky-Pudlak syndrome 1 (HPS1) and HPS4 proteins are components of two complexes, BLOC-3 and BLOC-4, involved in the biogenesis of lysosome-related organelles.
Hermansky-Pudlak syndrome (HPS) is a genetic disease of lysosome, melanosome, and granule biogenesis. Mutations of six different loci have been associated with HPS in humans, the most frequent of which are mutations of the HPS1 and HPS4 genes. Here, we show that the HPS1 and HPS4 proteins are components of two novel protein complexes involved in biogenesis of melanosome and lysosome-related org...
متن کاملThe loss of vacuolar protein sorting 11 (vps11) causes retinal pathogenesis in a vertebrate model of syndromic albinism.
PURPOSE To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). METHODS Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 47 10 شماره
صفحات -
تاریخ انتشار 2006