Analysis of 3d and 4d Proton Treatment Planning for Hepatic Tumors
نویسندگان
چکیده
The purpose of this study is to assess the difference between 4D liver dose calculations versus standard 3D treatment planning and to investigate the dosimetric gain of gating on radiation dose to normal tissue. 4DCT scans are collected for 25 patients with hepatic tumors treated by proton radiotherapy. The 4D treatment planning process explicitly takes into account respiratory motion of abdominal organs. A 4DCT scan consists of 10 3D anatomical states, each at an instant of time in the respiratory cycle. 4D treatment planning includes 1) propagating the target contours, drawn by a physician on one phase, to all breathing phases using deformable registration, 2) calculating the compensating bolus for proton therapy, and then 3) calculating 4D dose distributions. Dose volume histograms are used to compute the effective uniform dose (EUD) delivered to normal liver. We found that 4DCT planning always results in a larger EUD to normal liver when compared with dose from a 3DCT plan. The mean EUD difference between 4D and 3D planning is 3.8Gy (o= 1.9Gy, p<0.000 1). Gated 4D treatment planning results in a lower EUD to normal liver compared to ungated planning, with a mean difference of 2.9 Gy (a=1.9Gy, p<0.0001). The EUD difference is only weakly correlated with the magnitude of the superior-inferior (S-I) tumor motion (r=0.59 for 4D/3D, r=0.48 for ungated/gated). The AEUD correlation with clinical target volume (CTV) (as fraction of liver volume) is much weaker (r-0.31 for 4D/3D, r=0.26 for ungated/gated). There was no evidence that the tumor position within the liver influenced the AEUD. This study suggests that physicians should consider 4D treatment planning if the risk of normal tissue complications is high. Normal tissues may also be significantly spared by gated treatment as a motion management strategy. Thesis Supervisor: Richard Lanza Title: Senior Research Scientist
منابع مشابه
Investigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study
Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...
متن کاملEvaluation of the systematic error in using 3D dose calculation in scanning beam proton therapy for lung cancer
The objective of this study was to evaluate and understand the systematic error between the planned three-dimensional (3D) dose and the delivered dose to patient in scanning beam proton therapy for lung tumors. Single-field and multifield optimized scanning beam proton therapy plans were generated for ten patients with stage II-III lung cancer with a mix of tumor motion and size. 3D doses in CT...
متن کاملIntegrating fMRI data into 3D conventional radiotherapy treatmentplanning of brain tumors
Introduction: This study was aimed to investigate the beneficial effects of functional magnetic resonance imaging (fMRI) data in treatment planning for patients with CNS tumors in order to decrease the injury of functional regions of the brain followed by increase in life quality and survival of patients. This study pursues a novel approach in planning for the treatment of brai...
متن کامل4D geomechanical simulations for field development planning
3D and 4D geomechanical can be time-consuming to build and calibrate. However, once such a model is built, it is relative straightforward to use this model for various field development and management applications. In so doing, the return on the initial investment of time and effort in the creation of a 4D geomechanical model can be substantial. I present a case study where a 4D geomechanical m...
متن کاملFour-dimensional radiotherapy planning for DMLC-based respiratory motion tracking.
Four-dimensional (4D) radiotherapy is the explicit inclusion of the temporal changes in anatomy during the imaging, planning, and delivery of radiotherapy. Temporal anatomic changes can occur for many reasons, though the focus of the current investigation is respiration motion for lung tumors. The aim of this study was to develop 4D radiotherapy treatment-planning methodology for DMLC-based res...
متن کامل