Genotype-Specific Differences between Mouse CNS Stem Cell Lines Expressing Frontotemporal Dementia Mutant or Wild Type Human Tau
نویسندگان
چکیده
Stem cell (SC) lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of mouse central nervous system (CNS) SC-containing neurosphere cultures for studying heritable neurodegenerative disease, we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal dementia (FTD) mutation, rTg(tau(P301L))4510, with those expressing comparable levels of wild type human tau, rTg(tau(wt))21221. rTg(tau(P301L))4510 mice express the human tau(P301L) variant in their forebrains and display cellular, histological, biochemical and behavioral abnormalities similar to those in human FTD, including age-dependent differences in tau phosphorylation that distinguish them from rTg(tau(wt))21221 mice. We compared FTD-hallmark tau phosphorylation in neurospheres from rTg(tau(P301L))4510 mice and from rTg(tau(wt))21221 mice. The tau genotype-specific phosphorylation patterns in neurospheres mimicked those seen in mice, validating use of neurosphere cultures as models for studying tau phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses; tau in rTg(tau(P301L))4510 cultures was hypophosphorylated in comparison with rTg(tau(wt))21221 as was seen in young adult mice. In addition, there were fewer human tau-expressing cells in rTg(tau(P301L))4510 than in rTg(tau(wt))21221 cultures. Following differentiation, neuronal filopodia-spine density was slightly greater in rTg(tau(P301L))4510 than rTg(tau(wt))21221 and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns, the observation that neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms.
منابع مشابه
Wild-Type, but Not Mutant N296H, Human Tau Restores Aβ-Mediated Inhibition of LTP in Tau−/− mice
Microtubule associated protein tau (MAPT) is involved in the pathogenesis of Alzheimer's disease and many forms of frontotemporal dementia (FTD). We recently reported that Aβ-mediated inhibition of hippocampal long-term potentiation (LTP) in mice requires tau. Here, we asked whether expression of human MAPT can restore Aβ-mediated inhibition on a mouse Tau-/- background and whether human tau wi...
متن کاملIncreased 4R tau expression and behavioural changes in a novel MAPT-N296H genomic mouse model of tauopathy
The microtubule-associated protein tau is implicated in various neurodegenerative diseases including Alzheimer's disease, progressive supranuclear palsy and corticobasal degeneration, which are characterized by intracellular accumulation of hyperphosphorylated tau. Mutations in the tau gene MAPT cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). In the human cent...
متن کاملCell-mediated neuroprotection in a mouse model of human tauopathy.
Tau protein in a hyperphosphorylated state makes up the intracellular inclusions of several neurodegenerative diseases, including Alzheimer's disease and cases of frontotemporal dementia. Mutations in Tau cause familial forms of frontotemporal dementia, establishing that dysfunction of tau protein is sufficient to cause neurodegeneration and dementia. Transgenic mice expressing human mutant tau...
متن کاملMutant (R406W) human tau is hyperphosphorylated and does not efficiently bind microtubules in a neuronal cortical cell model.
Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) is an autosomal dominant neurodegenerative disorder caused by mutations in the gene that encodes for tau, a microtubule-binding protein. Neuropathologically the disease is characterized by extensive neuronal loss in the frontal and temporal lobes and the filamentous accumulation of hyperphosphorylated tau. The R406W miss...
متن کاملDifferential effects of Tau on the integrity and function of neurons essential for learning in Drosophila.
Tauopathies are a heterogeneous group of neurodegenerative dementias involving perturbations in the levels, phosphorylation, or mutations of the microtubule-binding protein Tau. The heterogeneous pathology in humans and model organisms suggests differential susceptibility of neuronal types to wild-type (WT) and mutant Tau. WT and mutant human Tau-encoding transgenes expressed pan-neuronally in ...
متن کامل