Analysis of a Hybrid Thermoelectric Microcooler: Thomson Heat and Geometric Optimization
نویسندگان
چکیده
In this work, we analyze the thermodynamics and geometric optimization of thermoelectric elements in a hybrid two-stage thermoelectric micro cooler (TEMC). We propose a novel procedure to improve the performance of the micro cooler based on optimum geometric parameters, cross sectional area (A) and length (L), of the semiconductor elements. Our analysis takes into account the Thomson effect to show its role on the performance of the system. We obtain dimensionless temperature spatial distributions, coefficient of performance (COP) and cooling power (Qc) in terms of the electric current for different values of the geometric ratio ω = A/L. In our analysis we consider two cases: (a) the same materials in both stages (homogeneous system); and (b) different materials in each stage (hybrid system). We introduce the geometric parameter, W = ω1/ω2, to optimize the micro device considering the geometric parameters of both stages, w1 and w2. Our results show the optimal configuration of materials that must be used in each stage. The Thomson effect leads to a slight improvement on the performance of the micro cooler. We determine the optimal electrical current to obtain the best performance of the TEMC. Geometric parameters have been optimized and results show that the hybrid system reaches a maximum cooling power 15.9% greater than the one-stage system (with the same electric current I = 0.49 A), and 11% greater than a homogeneous system, when ω = 0.78. The optimization of the ratio in the number of thermocouples in each stage shows that (COP) and (Qc) increase as the number of thermocouples in the second stage increase too, but with W = 0.94. We show that when two materials with different performances are placed in each stage, the optimal configuration of materials in the stages of the system must be determined to obtain a better performance of the hybrid two-stage TEMC system. These results are important because we offer a novel procedure to optimize a thermoelectric micro cooler considering the geometry of materials at a micro level.
منابع مشابه
Analytical modeling of silicon thermoelectric microcooler
Due to its inherently favorable properties, doped single-crystal silicon has potential application as an on-chip thermoelectric microcooler for advanced integrated circuits. In this paper, an analytical thermal model for silicon microcooler, which couples Peltier cooling with heat conduction and heat generation in the silicon substrate, and which includes heat conduction and heat generation in ...
متن کاملInfluences of the Thomson Effect on the Performance of a Thermoelectric Generator-Driven Thermoelectric Heat Pump Combined Device
A thermodynamic model of a thermoelectric generator-driven thermoelectric heat pump (TEG-TEH) combined device is established considering the Thomson effect and the temperature dependence of the thermoelectric properties based on non-equilibrium thermodynamics. Energy analysis and exergy analysis are performed. New expressions for heating load, maximum working temperature difference, coefficient...
متن کاملPerformance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties
In this work, the influences of the Thomson effect and the geometry of the p-type segmented leg on the performance of a segmented thermoelectric microcooler (STEMC) were examined. The effects of geometry and the material configuration of the p-type segmented leg on the cooling power (Qc) and coefficient of performance (COP) were investigated. The influence of the cross-sectional area ratio of t...
متن کاملOn - Chip Thermoelectric Cooling of Semiconductor Hot Spot
Title of Dissertation: On-Chip Thermoelectric Cooling of Semiconductor Hot Spot Peng Wang, Doctor of Philosophy, 2007 Directed By: Professor Avram Bar-Cohen Assistant Professor Bao Yang Department of Mechanical Engineering The Moore’s Law progression in semiconductor technology, including shrinking feature size, increasing transistor density, and faster circuit speeds, is leading to increasing ...
متن کاملModeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region
In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017