Dynamical structure of hand trajectories during pole balancing.

نویسندگان

  • Tyler Cluff
  • Michael A Riley
  • Ramesh Balasubramaniam
چکیده

We studied the dynamics of fingertip displacement series in human pole balancing using recurrence quantification analysis (RQA). The purpose of this research was to determine how the dynamical structure of fingertip fluctuations evolved with learning. Learning was accompanied by increased stability of movement trajectories in spite of a reduced tendency for movement trajectories to recur. Task manipulations, on the other hand, resulted in more intermittent fingertip dynamics, which suggests that individuals were more tolerant of random fingertip displacements when the task was performed while sitting relative to standing. Such a strategy would minimize the computational burden associated with maintaining pole stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm

The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...

متن کامل

Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves

In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...

متن کامل

Inherent structure of manipulative hand movements and its discriminative power

Understanding the inherent structure of manipulative hand movements is a critical step toward automatic recognition of manipulative hand movements and toward automatic planning of natural movements for dexterous robots. Manipulative hand movements involve coordinated movements of the digits to manipulate an object within the hand, and are classified as either simultaneous or sequential. Simulta...

متن کامل

Functional stabilization of unstable fixed points: human pole balancing using time-to-balance information.

Humans are often faced with tasks that require stabilizing inherently unstable situations. The authors explored the dynamics of human functional stabilization by having participants continually balance a pole until a minimum time criterion was reached. Conditions were manipulated with respect to geometry, mass, and characteristic "fall time" of the pole. Distributions of timing between pole and...

متن کامل

3-RPS Parallel Manipulator Dynamical Modelling and Control Based on SMC and FL Methods

In this paper, a dynamical model-based SMC (Sliding Mode Control) is proposed fortrajectory tracking of a 3-RPS (Revolute, Prismatic, Spherical) parallel manipulator. With ignoring smallinertial effects of all legs and joints compared with those of the end-effector of 3-RPS, the dynamical model ofthe manipulator is developed based on Lagrange method. By removing the unknown Lagrange multipliers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 464 2  شماره 

صفحات  -

تاریخ انتشار 2009