Large-Scale Price Optimization via Network Flow
نویسندگان
چکیده
This paper deals with price optimization, which is to find the best pricing strategy that maximizes revenue or profit, on the basis of demand forecasting models. Though recent advances in regression technologies have made it possible to reveal price-demand relationship of a large number of products, most existing price optimization methods, such as mixed integer programming formulation, cannot handle tens or hundreds of products because of their high computational costs. To cope with this problem, this paper proposes a novel approach based on network flow algorithms. We reveal a connection between supermodularity of the revenue and cross elasticity of demand. On the basis of this connection, we propose an efficient algorithm that employs network flow algorithms. The proposed algorithm can handle hundreds or thousands of products, and returns an exact optimal solution under an assumption regarding cross elasticity of demand. Even if the assumption does not hold, the proposed algorithm can efficiently find approximate solutions as good as other state-of-the-art methods, as empirical results show.
منابع مشابه
پیشبینی کوتاه مدت قیمت تراکم گرهی در یک سیستم قدرت بزرگ تجدید ساختار یافته با استفاده از شبکههای عصبی مصنوعی با بهینهسازی آموزش ژنتیکی
In a daily power market, price and load forecasting is the most important signal for the market participants. In this paper, an accurate feed-forward neural network model with a genetic optimization levenberg-marquardt back propagation (LMBP) training algorithm is employed for short-term nodal congestion price forecasting in different zones of a large-scale power market. The use of genetic algo...
متن کاملOptimal defender allocation for massive security games: A branch and price approach
Algorithms to solve security games, an important class of Stackelberg games, have seen successful real-world deployment by LAX police and the Federal Air Marshal Service. These algorithms provide randomized schedules to optimally allocate limited security resources for infrastructure protection. Unfortunately, these stateof-the-art algorithms fail to scale-up or to provide a correct solution fo...
متن کاملAn Ant Colony Optimization Algorithm for Network Vulnerability Analysis
Intruders often combine exploits against multiple vulnerabilities in order to break into the system. Each attack scenario is a sequence of exploits launched by an intruder that leads to an undesirable state such as access to a database, service disruption, etc. The collection of possible attack scenarios in a computer network can be represented by a directed graph, called network attack gra...
متن کاملOptimization of continual production of CNTs by CVD method using Radial Basic Function (RBF) neural network and the Bees Algorithm
Optimization of continuous synthesis of high purity carbon nanotubes (CNTs) using chemical vapour deposition (CVD) method was studied experimentally and theoretically. Iron pentacarbonyl (Fe(CO)5), acetylene (C2H2) and Ar were used as the catalyst source, carbon source and carrier gas respectively. The synthesis temperature and flow rates of Ar and acetylene were optimized to produce CNTs at a ...
متن کاملA New Mathematical Model To Optimize A Green Gas Network: A Case Study
Global warming created by large scale emissions of Greenhouse Gases (GHG) are a worldwide concern. Due to this, the issue of green gas network has required more attention in the last decades. Here, we address the GHG-based problem that arises in a gas network where gas flow is transferred from the Town Board Station (TBS) to consumers by pipeline systems. Given this environment, an optimization...
متن کامل