Tafazzin knockdown causes hypertrophy of neonatal ventricular myocytes.

نویسنده

  • Quan He
چکیده

Mutation of the mitochondrial protein tafazzin causes dilated cardiomyopathy in Barth syndrome. We employed an adenovirus as a vector to transfer tafazzin small hairpin RNA (shRNA) into neonatal ventricular myocytes (NVMs) to investigate the effects of tafazzin knockdown. The tafazzin shRNA adenovirus consistently knocked down tafazzin mRNA and lowered cardiolipin while significantly decreasing the production of ATP by the mitochondria. The phosphorylation of AMP-activated protein kinase and mitochondrial density were both increased in tafazzin knockdown NVMs compared with scrambled shRNA controls. When we tested whether tafazzin knockdown causes hypertrophy in vitro, we found that the surface area of NVMs infected with tafazzin shRNA adenovirus was significantly increased, as were the protein synthesis and expression of the hypertrophic marker gene, brain natriuretic peptide. Taken together, our data support the concept that a decreased tafazzin expression causes cardiomyocyte hypertrophy in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts.

Mutation of the mitochondrial protein tafazzin causes dilated cardiomyopathy in Barth syndrome. Previous studies have shown that tafazzin knockdown promotes hypertrophy of neonatal cardiac myocytes. The current investigation was designed to show whether tafazzin knockdown affects cardiac fibroblast proliferation and collagen secretion, which contribute to fibrosis in dilated cardiomyopathy. In ...

متن کامل

Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byprod...

متن کامل

Tafazzin Knockdown in Mice Leads to a Developmental Cardiomyopathy With Early Diastolic Dysfunction Preceding Myocardial Noncompaction

BACKGROUND Barth syndrome is a rare, multisystem disorder caused by mutations in tafazzin that lead to cardiolipin deficiency and mitochondrial abnormalities. Patients most commonly develop an early-onset cardiomyopathy in infancy or fetal life. METHODS AND RESULTS Knockdown of tafazzin (TAZKD) in a mouse model was induced from the start of gestation via a doxycycline-inducible shRNA transgen...

متن کامل

Gene therapy to inhibit the calcium channel beta subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy.

Calcium cycling figures prominently in excitation-contraction coupling and in various signaling cascades involved in the development of left ventricular hypertrophy. We hypothesized that genetic suppression of the L-type calcium channel accessory beta-subunit would modulate calcium current and suppress cardiac hypertrophy. A short hairpin RNA template sequence capable of mediating the knockdown...

متن کامل

Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.

BACKGROUND L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. METHOD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 299 1  شماره 

صفحات  -

تاریخ انتشار 2010